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1. Introduction

He who loves practice without theory is like
the sailor who boards the ship without a
rudder and compass and never knows where
he may cast.

Leonardo da Vinci

The usage of cryptography have tremendously increased in the last years, as the use
of the internet has exploded. A basic aim of cryptography is to enable two parties to
confidentially communicate over an insecure channel. This means that any adversary
is unable to recover the message (also called plaintext). The most common activity in
cryptography is encryption and decryption. The term encryption describes the trans-
formation of the plaintext into the ciphertext. If the ciphertext is used as input into the
reverse transformation, then we recover the plaintext. This describes the decryption of
a ciphertext.
We speak of symmetric key cryptography if the encryption transformation is trivially re-
lated to the reverse decryption transformation. In case the encryption key can be made
public, we speak of public key cryptography. This development came up in the mid
1970s when Diffie and Hellman published their paper New Directions in Cryptography.
Public key cryptography is often preferable to symmetric key cryptography because it
allows to communicate in a secure way without having previously shared keys.
In the late 1940s, Shannon [39] introduced the fundamental concepts of confusion and dif-
fusion to achieve security in cryptosystems. Confusion renders the relationship between
the key and the ciphertext as complex as possible. This is reflected in the nonlinearity
of components of the cryptosystem. Diffusion means that the ciphertext depends on the
plaintext in a complex manner. Thus, we have diffusion when changing a small part in
the plaintext leads to a large change in the ciphertext.
The question arises whether there are functions that can be utilized to achieve this. We
will show that suitable Boolean functions easily provide confusion as well as diffusion.
Hence, we deal with Boolean functions and their cryptographic properties.

Objectives

Boolean functions play an important role in cryptography, beginning with their use in
linear feedback shift registers (LFSRs). In many stream ciphers, the generation of the
keystream consists of a linear part. It is usually composed of one or several LFSRs and a
nonlinear filtering function f which produces the output. The main cryptographic prop-
erties required for constructing such a function f are: (1) balancedness, (2) algebraic
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degree, (3) correlation immunity, (4) propagation criterion and (5) nonlinear-
ity.

The property of balancedness, that is f outputs the same number of zeros and ones,
prevents the system from leaking any statistical information about its structure. This
means the system does not reveal any information about the plaintext if the ciphertext
is known.

A high algebraic degree is needed to prevent the system against attacks by the Berlekamp-
Massey algorithm. This algorithm outputs the minimal polynomial of a binary sequence
in finitely many steps, thus, we know an upper bound of its algebraic degree.

Correlation immune Boolean functions were introduced by Siegenthaler [40] for their
ability to resist against certain kinds of divide and conquer attacks on stream ciphers.
That is, f is correlation immune of order k if its output is statistically independent of
any combination of k input variables. A balanced Boolean function which is correlation
immune of order k is called k-resilient. Siegenthaler [40] proved a fundamental relation
between the order of correlation immunity and the algebraic degree of a Boolean func-
tion. On the one hand, he showed that the maximum possible algebraic degree of a
Boolean function in n variables which is correlation immune of order k is at most n− k.
On the other hand, if the function is also balanced the algebraic degree is at most n−k−1.

A n-variable Boolean function is said to satisfy the propagation criterion (PC) with
respect to a nonzero vector if complementing the input coordinates results in the output
of the function being complemented 50% of the time over all possible input vectors. Also
a Boolean function may satisfy the generalization, the propagation criterion of degree k,
if complementing k or less input coordinates results in the output of the function being
changed 50% of the time over all possible input vectors. Another important criterion
is the strict avalanche criterion (SAC). The strict avalanche criterion coincides with
the propagation criterion of degree 1. Lloyd [19] pointed out that if a function satisfies
the strict avalanche criterion of degree k, the function also satisfies the strict avalanche
criterion of degree j for any j = 0, . . . , k − 1. We can establish the same result for
the propagation criterion. Furthermore, we present a recurrence relation to obtain a
result on counting SAC functions and provide construction methods to design Boolean
functions which satisfy the propagation criterion.

In the mid 1970s, Rothaus [36] introduced a class of Boolean functions which he
named bent functions. Bent functions only exist in even dimension and possess the high-
est nonlinearity. Furthermore, they also satisfy the propagation criterion with respect
to all nonzero vectors [11]. However, their characteristic to exist only in even dimension
prohibits their immediate application in practical usage. A second drawback is their un-
balancedness. In cryptographic applications, e.g. the design of strong substitution boxes
(S-Boxes), it is often required that the output of the function must act as a uniformly
distributed random variable if the input coordinates of a Boolean function are selected
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randomly independent [44]. In other words, the function has to be balanced.
Bentness is closely related to the study of difference sets, Hadamard matrices and the
signs of the Walsh-coefficients. Furthermore, Rothaus [36] showed that the degree of a
bent function is at most n

2
for n > 2.

The construction of bent functions has attracted much attention. There are primary
constructions and secondary constructions. Primary constructions include bent func-
tions that are not used as building blocks in previous constructions. As an example of
primary construction, we present the Maiorana-McFarland construction [22]. We ob-
serve a non-recursive method given by Camion et al. [1] using the Maiorana-McFarland
construction as a starting point to construct k-resilient functions. Moreover, we follow
Carlet’s approach [5] using the Maiorana-McFarland construction to design functions
satisfying the propagation criterion (of degree k).
Secondary constructions lead to recursive constructions. We observe the possibility to
construct bent functions based on concatenation. Dillon [11] pointed out that functions
of this type may be decomposed into simpler functions on lower dimensional vector
spaces. Primary constructions potentially lead to wider classes of bent functions than
secondary constructions.

The nonlinearity of a Boolean function is yet another important cryptographic prop-
erty. Pieprzyk and Finkelstein [33] introduced the notion in the late 1980s as the min-
imum Hamming-distance from the Boolean function f to the set of all affine functions.
Thus, we can say that nonlinearity measures the ability of a system to resist against
being expressed as a set of linear equations. Furthermore, a strong need exists for highly
nonlinear functions to make the ciphers withstand linear attacks as introduced by Mat-
sui [24].
Seberry et al. [38] showed that the upper bound of nonlinearity is given by 2n−1− 2

n
2
−1

and only attainable by bent functions. Owing to the fact that high nonlinearity is not the
only important property, bent functions may not directly be used. However, they serve
as an excellent starting point to design highly (balanced) nonlinear functions which also
fulfill other properties. Moreover, we observe whether there is a bound of nonlinearity
for k-resilient Boolean functions for k < n− 2. Furthermore, we examine the impact of
the algebraic degree on the bound of nonlinearity.

To sum up, our main objectives are to provide basic notions about Boolean functions
and their properties. In particular, we focus on nonlinearity and the relationships be-
tween nonlinearity and correlation immunity, as well as nonlinearity and the propagation
criterion.

Structure of the thesis

This thesis consists of three parts. The first part has an introductory character and
serves to get used to Boolean functions and further basic terms that are used within
the thesis. In particular, the Walsh transform is of central importance, as it turns out
that the Walsh transform is a very powerful tool to prove many results concerning the
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different properties. Chapter 2 and 3 are devoted to those preliminaries.

The second part of this thesis starts in chapter 4 and introduces correlation immu-
nity. We provide basic definitions and observe ways to construct (balanced) correlation
immune functions. This part is extended with the strict avalanche criterion and its
generalization, the propagation criterion. Especially, the concept of diffusion coincides
with the strict avalanche criterion. We turn our attention to the observation whether
there are constructions that enable to design functions that fulfill the strict avalanche
criterion (of higher order) or the propagation criterion (of higher order), respectively.
These observations are part of chapter 5.

The third part starts with chapter 6 in which we introduce Bent Boolean functions.
These functions only exist in an even number of variables and attain the upper bound of
nonlinearity. Chapter 7 is devoted to the observations about nonlinearity and provides
construction method to design highly (balanced) nonlinear functions. The last element
of the third part is displayed in chapter 8, where the relationships between nonlinearity,
correlation immunity and the propagation criterion are observed.

Finally, the thesis closes with a conclusion and an outlook to further work.
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2. Generalities on Boolean Functions

2.1. Boolean Functions

The purpose of this section is to make some preliminary definitions on Boolean functions.
Let Fn2 be the vector space of dimension n over the two-element Galois field F2. Fn2 consist
of 2n vectors written in a binary sequence of length n.
The vector space Fn2 is equipped with the scalar product 〈·, ·〉 : Fn2 × Fn2 → F2 with

〈a, b〉 =
n⊕
i=1

ai · bi,

where the multiplication and addition ⊕ are over F2.
However, if additions are performed in the real numbers, then it is clear from the context.

Definition 2.1. A Boolean function of n variables is a function f : Fn2 → F2 (or
simply a function on Fn2 ). The (0, 1)-sequence is defined by (f(a0), f(a1), . . . , f(a2n−1)),
also called the truth table of f, where a0 = (0, . . . , 0, 0), a1 = (0, . . . , 0, 1), . . . , a2n−1 =
(1, . . . , 1, 1), ordered by lexicographical order.

Definition 2.2. The logical negation or complement of a Boolean function f is defined
by f = f ⊕ 1.

First, we introduce affine Boolean functions.

Definition 2.3. An affine function f on Fn2 is a function that takes the form

f(x) = 〈a, x〉 ⊕ c = a1x1 ⊕ · · · ⊕ anxn ⊕ c, (2.1)

where a = (a1, . . . , an) ∈ Fn2 and c ∈ F2. If c = 0, then f is a linear function.

The sequence of an affine (or linear) function is called an affine (or linear) sequence.

Definition 2.4. The set of all Boolean functions is denoted by

Fn = {f |f : Fn2 → F2}.

The subset of all affine Boolean functions in the space Fn is denoted by

An = {α|α is affine and α ∈ Fn}.

We define the subset of all linear Boolean functions in the space Fn by

Ln = {β|β is linear and β ∈ Fn}.
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Remark.

1. The set of all affine functions consist of the linear functions and their negations.

2. The cardinalities of the above sets are easily observed as

|Fn| = 22n , |An| = 2n+1 and |Ln| = 2n.

Every once in a while, we would like to have functions with values in the set {1,−1}.
Thus, we introduce the sign function.

Definition 2.5. To each Boolean function f : Fn2 → F2 we associate its sign function,

or character form, denoted by f̂ : Fn2 → R∗ ⊆ C∗ and defined by

f̂(x) = (−1)f(x).

The (1,−1)-sequence (or simply sequence) is defined by ((−1)f(a0), . . . , (−1)f(a2n−1)),
where ai as defined in definition 2.1.

The behavior of the sign function on the sum and product of Boolean functions is
shown in the following proposition.

Proposition 2.6. If f and g are Boolean functions on Fn2 , the following statements hold:

1. f̂ ⊕ g = f̂ ĝ.

2. 2f̂ g = 1 + f̂ + ĝ − f̂ ĝ.

Proof.

1. This claim is straightforward:

f̂ ⊕ g = (−1)f⊕g = (−1)f · (−1)g = f̂ ĝ.

2. This claim is provable with the observation f̂ = 1− 2f , that is

1 + f̂ + ĝ − f̂ ĝ = 1 + (1− 2f) + (1− 2g)− (1− 2f)(1− 2g)

= 2− 4fg = 2(1− 2fg) = 2f̂ g

Definition 2.7. The Hamming-weight of a Boolean function f : Fn2 → F2 is the
number of 1s in the truth table of f.

Next, we introduce the notion of distance between two Boolean functions.
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Definition 2.8. For two Boolean functions f, g : Fn2 → F2 we define the Hamming-
distance as the number of arguments where f and g differ, that is

d(f, g) = #{x ∈ Fn2 |f(x) 6= g(x)}.

In other words, the Hamming-distance is the number of 1s in the truth table of f + g.

We can also express the Hamming-distance in terms of the Hamming-weight as d(f, g) =
wt(f ⊕ g).

It is simple to show that the Hamming-distance d is a metric on Fn2 . It follows by
noting that d(f, g) equals the number of entries that are needed to turn f into g. Thus,
d(f, g) is zero if and only if f = g. It is obvious that the Hamming-distance is symmetric
and the triangular inequality is shown in lemma 2.10.

Definition 2.9. The support of a Boolean function f is defined as supp(f) = {x ∈
Fn2 |f(x) = 1}.

The Hamming-weight can also be expressed in the notions of the Hamming-distance
and the support of a Boolean function as wt(f) := d(f, 0) = |supp(f)|.

Let us illustrate the notions by the following example.

Example 1. Let f and g be Boolean functions in two variables:

f(x1, x2) = x1x2

g(x1, x2) = (x1 + x2)

The truth table of the two Boolean functions is:

x1 x2 f g f ⊕ g
0 0 0 0 0
0 1 0 1 1
1 0 1 1 0
1 1 0 0 0

Therefore, we compute

wt(f) = 1

wt(g) = 2

d(f, g) = wt(f ⊕ g) = 1.

The following lemma provides us with some properties satisfied by the Hamming-
distance.

Lemma 2.10. The Hamming-distance satisfies the following properties:
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1. Let f, g, h ∈ Fn: d(f, g) + d(g, h) ≥ d(f, h).

2. Let g = g ⊕ 1 be the negation of g, then d(f, g) = 2n − d(f, g). This is the number
of arguments where f and g coincide.

3. The number of roots in f is d(f, 1) = 2n − wt(f).

Proof. 1. Let f, g, h ∈ Fn: if f(x) 6= h(x) so f(x) 6= g(x) or g(x) 6= h(x) then

d(f, g) + d(g, h) = #{x ∈ Fn2 |f(x) 6= g(x)}+ #{x ∈ Fn2 |g(x) 6= h(x)}
≥ #{x ∈ Fn2 |f(x) 6= h(x)} = d(f, h).

2. Let g be the negation of g then

d(f, g) = #{x ∈ Fn2 |f(x) 6= g(x)}
= #{x ∈ Fn2 |f(x) = g(x)}
= 2n −#{x ∈ Fn2 |f(x) 6= g(x)} = 2n − d(f, g).

3. Let f ∈ Fn then

d(f, 1) = #{x ∈ Fn2 |f(x) 6= 1} = 2n − d(f, 0) = 2n − wt(f).

Theorem 2.11. If we have two affine functions α, β ∈ An, then the distance between
them is equal to

d(α, β) =


0 if α = β

2n if α = β

2n−1 in other cases.

Proof.

• If α = β then there are no arguments x ∈ Fn2 where α and β differ. Therefore, the
distance between them is equal to zero.

• If α = β = β ⊕ 1 then the functions differ in every argument x ∈ Fn2 . Therefore,
the functions have a maximum distance which is equal to 2n.

• If α and β are arbitrary affine functions, simultaneously α 6= β and α 6= β, then
we have

d(α, β) = #{x ∈ Fn2 |α(x) 6= β(x)} = #{x ∈ Fn2 |α(x) = β(x)}
= 2n −#{x ∈ Fn2 |α(x) 6= β(x)} = 2n−1.
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We introduce the notion of balancedness. Moreover, we note that balancedness of a
Boolean function is a significant cryptographic property in the way that the output of
the function should not leak any statistical information about structure.

Definition 2.12. A (0, 1)-sequence ((1,−1)-sequence) is called balanced if it contains
an equal number of zeros and ones (ones and minus ones). A function is balanced if its
sequence is balanced i.e. wt(f) = 2n−1.

Next we introduce the notion of equivalence of two Boolean functions.

Definition 2.13. Two Boolean functions f, g on Fn2 are called (affinely) equivalent if
f(x) = g(Ax ⊕ b), where a, b ∈ Fn2 and A is a n × n nonsingular matrix. If no such
transformation exists, then f, g are called inequivalent.

Definition 2.14. The autocorrelation function r̂f̂ (a) with a shift a ∈ Fn2 is defined
as

r̂f̂ (a) =
∑
x∈Fn

2

f̂(x) · f̂(x⊕ a) =
∑
x∈Fn

2

(−1)f(x)⊕f(x⊕a).

We shall write r̂(a) if there is no danger of confusion.

Definition 2.15. Let f be a function on Fn2 . a ∈ Fn2 is called a linear structure of f if

|r̂(a)| = 2n,

that is, if f̂(x) · f̂(x⊕ a) is a constant.

The set of all linear structures of a function f form a linear subspace of Fn2 . The
dimension gives a measure of linearity. This measure is upper bounded by 2n. The
bound is attainable by the allzero vector in Fn2 and follows from lemma 3.2. A nonzero
linear structure is cryptographically undesirable.

Definition 2.16. The correlation value between two Boolean functions g and h is
defined by

c(g, h) = 1− d(g, h)

2n−1
.

2.2. The Algebraic Normal Form

We introduce the most commonly used representation of a Boolean function in cryp-
tography and coding, namely, the n-variable polynomial representation over F2. This
representation is also called Algebraic Normal Form. The benefit of this representation
is that we can immediately obtain the algebraic degree. Furthermore, we still have the
truth table representation of the Boolean function of which the advantage is to obtain
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e.g. the Hamming-weight. Therefore, it is eligible to switch between both constructions.

Each vector u = (u1, . . . , un) corresponds to the set of indices which index those
coordinated of u containing its 1’s, that is the set {i|ui = 1}. This identification on Fn2
induces the natural (partial) order which we call the inclusion order.

Definition 2.17. For any vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Fn2 , we say
that u is contained in v (and write u ≤ v) if ui ≤ vi for all i = 1, . . . , n.

Moreover, we need an inversion theorem which was introduced by Hall [16]. It is a
specific case of ”Möbius inversion in a partially ordered set”.

Theorem 2.18. Let f and g be functions from Fn2 to F2 and let Fn2 be partially ordered
by the inclusion order ≤. Then the following statements are equivalent:

(i) f(u) =
∑

v≤u g(v) for all v ∈ Fn2 ,

(ii) g(u) =
∑

v≤u f(v) for all v ∈ Fn2 .

Proof. We apply (i) on the right side of (ii) and obtain∑
v≤u

f(v) =
∑
v≤u

∑
w≤v

g(w) =
∑

w≤v≤u

g(w) =
∑
w≤u

2wt(u−v)g(w) = g(u),

where the last equality is a consequence of F2 having characteristic 2. Therefore, (i)
implies (ii). By changing f and g it follows that (ii) implies (i), too.

Theorem 2.19. Every Boolean function f : Fn2 → F2 can be expressed as a unique
polynomial in F2[x1, . . . , xn]/(x2

1 ⊕ x1, . . . , x
2
n ⊕ xn):

f(x1, . . . , xn) =
∑
u∈Fn

2

a(u)xu1
1 · · ·xunn

where a(u) ∈ F2 with a(u) =
∑

x≤u f(x) and u = (u1, . . . , un). This representation is
called the Algebraic Normal Form or ANF for short.

Proof. Let f be any function from Fn2 to F2. By Lagrange interpolation, f is given by
the polynomial

∑
u∈Fn

2

f(u)
n∏
j=1

(xj ⊕ uj ⊕ 1)

which we rearrange to the form∑
u∈Fn

2

g(u)xu1
1 x

u2
2 · · ·xunn .

14



By using the above inversion theorem 2.18, we have g(u) =
∑

x≤u f(x) = a(u) which
gives us the existence of the algebraic normal form for every Boolean function. This im-
plies that the mapping, from every polynomial ϑ ∈ F2[x1, . . . , xn]/(x2

1 ⊕ x1, . . . , x
2
n ⊕

xn) to the corresponding function x ∈ Fn2 7→ ϑ(x), is onto Fn. Since the size of
F2[x1, . . . , xn]/(x2

1 ⊕ x1, . . . , x
2
n ⊕ xn) and Fn are equal, this correspondence is one-to-

one.

Another possible representation of the same ANF uses an indexation of subsets of
N = {1, . . . , n}. Thus, we obtain the form

f(x) =
∑

I∈P(N)

aI

(∏
i∈I

xi

)
=

∑
I∈P(N)

aIx
I , (2.2)

where P(N) denotes the power set of N .

Example 2. We consider the function f with the following truth table:

x ∈ F3
2 f(x)

000 0
001 1
010 0
011 0
100 1
101 0
110 0
111 1

It is the sum of the atomic functions f1, f2 and f3 whose truth tables are

x ∈ F3
2 f1(x) f2(x) f3(x)

000 0 0 0
001 1 0 0
010 0 0 0
011 0 0 0
100 0 1 0
101 0 0 0
110 0 0 0
111 0 0 1

Now we observe where the function f1(x) takes the value 1. The function f1(x) takes
the value 1 if and only if x1 ⊕ 1 = 1, x2 ⊕ 1 = 1 and x3 = 1. Thus, we obtain the ANF
by expanding the product (x1 ⊕ 1)(x2 ⊕ 1)x3 = f1(x). Similar observations provide the
ANFs for f2(x) and f3(x) with f2(x) = x1(x2 ⊕ 1)(x3 ⊕ 1) and f3(x) = x1x2x3. Finally,
we can see that the ANF of f(x) equals (x1⊕1)(x2⊕1)x3⊕x1(x2⊕1)(x3⊕1)⊕x1x2x3 =
x1 ⊕ x2 ⊕ x1x2 ⊕ x1x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3.
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Definition 2.20. The number of variables in the highest order monomial with nonzero
coefficient is called the algebraic degree.

Example 3. We take the function f(x) = x1⊕x1x2⊕x1x3⊕x1x2x3. The highest order
monomial with a nonzero coefficient is x1x2x3. Thus, the algebraic degree is deg(f) = 3.

Obviously, affine functions have at most degree one. Next, we introduce the term
homogeneity of a Boolean function.

Definition 2.21. A Boolean function is said to be homogeneous if its algebraic normal
form only contains terms of the same degree.

Example 4. We consider the function f(x) = x1x2 ⊕ x1x3 ⊕ x2x3. Then we obtain
deg(f) = 2 and the ANF only contains terms of the same degree. Thus, the function is
homogeneous.

Remark. The algebraic normalform is not the only representation to express a Boolean
function. Also the disjunctive normal form (DNF) is a possibility. Carlet and Guillot
introduced yet another representation, the so-called numerical normal form (NNF).

As mentioned before, we want to evaluate the ANF. Therefore, we provide the follow-
ing example which shows the utility to switch between the polynomial representation of
any function and its truth table.

Example 5. Let us assume that we have an eight bit string of the algebraic normalform
of a function f ∈ F3 as follows

(00101101).

Then we can interpret this as

a(000) = 0, a(001) = 0, a(010) = 1, a(011) = 0,

a(100) = 1, a(101) = 1, a(110) = 0, a(111) = 1,

and we obtain the polynomial

0 · 1⊕ 0 · x3 ⊕ 1 · x2 ⊕ 0 · x2x3 ⊕ 1 · x1 ⊕ 1 · x1x3 ⊕ 0 · x1x2 ⊕ 1 · x1x2x3.

The related truth table is

f(000) = 0, f(001) = 0, f(010) = 1, f(011) = 1,

f(100) = 1, f(101) = 0, f(110) = 0, f(111) = 0,

and we write the truth table as a bit string

(00111000).

If we have given the bit string of the truth table we can achieve the following polynomial
(written in short form)

1 · x2 ⊕ 1 · x2x3 ⊕ 1 · x1.

We evaluate the polynomial analogue to the polynomial above and get the bit string
representation of the algebraic normal form.
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We close this section with the introduction of a useful notation to obtain the functional
representation of a concatenated sequence. Let a = (i1, . . . , in) be a vector on Fn2 and Da

is a function on Fn2 given by

Da(y1, . . . , yn) = (y1 ⊕ i1 ⊕ 1) · · · (yn ⊕ in ⊕ 1).

With this notation we obtain the following lemma.

Lemma 2.22. [38] Let f0, f1, . . . , f2n−1 be functions on Fn2 . Let ξi be the sequence of fi,
i = 0, 1, . . . , 2n− 1. Then ξ = (ξ0, ξ1, . . . , ξ2n−1) is the sequence of the following function
on Fn+m

2

f(y, x) =
2n−1⊕
i=0

Dai(y)fi(x),

where y = (y1, . . . , ym), x = (x1, . . . , xn) and ai as defined in definition (2.1).

To make ourselves familiar with this notation, we observe that if ξ1 and ξ2 are the
sequences of functions f1 and f2 on Fn2 , then ξ = (ξ1, ξ2) is the sequence of the following
function g on Fn+1

2

g(u, x1, . . . , xn) = [f1, f2]n+1 = (u⊕ 1) · f1(x1, . . . , xn) + u · f2(x1, . . . , xn).

2.3. First Considerations of Nonlinearity

Nonlinearity is one of the most important cryptographic properties. It is introduced
rather briefly at this point, we will however deal with nonlinearity intensely in chapter
7.

As before, we denote with An the set of all affine functions and the Hamming-distance
(2.8) is the number of arguments where the Boolean functions f and g differ. In addition,
Pieprzyk and Finkelstein [33] introduced the notion of nonlinearity as follows

Definition 2.23. The nonlinearity of a Boolean function f ∈ Fn is denoted by Nf and
equals

Nf = d(f,An) = min
α∈An

d(f, α).

It is obvious that nonlinearity of an affine function is zero. If the Boolean function
f is not affine, then we have Nf > 0 by definition. Let us observe an example about
nonlinearity.

Example 6. Let f(x) = x1x2 ∈ F2 be the function and we compute its nonlinearity.
The related truth table is given by:
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x f
00 0
01 0
10 0
11 1

In the next step, we have to observe the truth tables of all affine functions.

x f1 = 1 f2 = 0 f3 = x1 f4 = x1 ⊕ 1 f5 = x2 f6 = x2 ⊕ 1 f7 = x1 ⊕ x2 f8 = x1 ⊕ x2

00 1 0 0 1 0 1 0 0
01 1 0 0 1 1 0 1 1
10 1 0 1 0 0 1 1 1
11 1 0 1 0 1 0 0 0

Next, we have to compute all Hamming-distances between the function f and all affine
functions.

d(f, f1) d(f, f2) d(f, f3) d(f, f4) d(f, f5) d(f, f6) d(f, f7) d(f, f8)
3 1 1 3 1 3 3 3

From definition, the nonlinearity of the function is the minimal Hamming-distance.
Therefore, it follows Nf = d(f, f2) = d(f, f3) = d(f, f5) = 1.

High nonlinearity is essential in designing a good cryptosystem. It measures the
ability of a cryptographic system using the functions to resist against being expressed as
a linear set of equations and it assures resistance against linear cryptanalysis introduced
by Matsui [24].
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3. The Walsh Transform

3.1. Generalities of the Walsh Transform

In this chapter we introduce one of the most important tools in cryptography. Namely,
the Walsh transform which is the characteristic 2 case of the discrete Fourier transform.
As we shall see, the use of the Walsh transform makes the computation of nonlinearity
and the other properties an easy task.
Let us recall that we have the space Fn of all two-valued functions on Fn2 . The domain
of Fn is an abelian group and its range elements 0 and 1 can be added and multiplied as
complex numbers. Now we analyze Fn by using tools from harmonic analysis, cf. Lechner
[17]. This means that we are able to construct an orthogonal basis of Fourier transform
kernel functions, or also known as group characters, on Fn. The kernel functions are
defined in terms of a group homomorphism from Fn2 to the direct product of n copies of
the multiplicative subgroup {±1} on the unit circle of the complex plane. Thereby, we
obtain the group characters Gu(x) = (−1)u1x1 · · · · · (−1)unxn = (−1)〈u,x〉. In doing so,
the set {Gu|u ∈ Fn2} is an orthogonal basis for Fn. Due to these observations, we define
the Walsh transform of a Boolean function as follows:

Definition 3.1. The Walsh transform of a function f on Fn2 is a map W : Fn2 −→ R
defined by

W (f)(u) =
∑
x∈Fn

2

f(x) · (−1)〈u,x〉, (3.1)

where 〈u, x〉 is the canonical scalar product. The Walsh spectrum of f is the list of
2n Walsh-coefficients given by (3.1) as u varies.

Lemma 3.2. If u ∈ Fn2 , we have

∑
x∈Fn

2

(−1)〈u,x〉 =

{
2n if u = 0

0 else.

Proof. If u = 0, then all exponents are zero and therefore all summands are equal
1. Therefore, we have 2n summands. Now we assume that u 6= 0 and consider the
hyperplanes H = {x ∈ Fn2 |〈u, x〉 = 0} and H = {x ∈ Fn2 |〈u, x〉 = 1}. It is obvious
that these hyperplanes generate a partition of Fn2 . Furthermore, for any u ∈ H, the
summand is equal one, and for any u ∈ H, the summand is equal −1. In addition, the
cardinalities of H and H are the same, that is 2n−1. Therefore, the sum equals zero and
the statement follows immediately.
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Next we analyze the effect of applying the Walsh transform on W (f). Proceeding this
way we get the observation

W (W (f))(u) =
∑
x∈Fn

2

W (f)(x) · (−1)〈u,x〉

=
∑
x∈Fn

2

∑
v∈Fn

2

f(v) · (−1)〈v,x〉 · (−1)〈u,x〉

=
∑
v∈Fn

2

f(v)

∑
x∈Fn

2

(−1)〈(v+u),x〉


=︸︷︷︸

(3.2)

2n
∑
v∈Fn

2

f(v) = 2nf(u).

Theorem 3.3. The Walsh transform W : Fn2 −→ R is bijective and the inversion is given
by:

W−1 = 2−nW.

Hence, f can be recovered by the inverse Walsh transform given by

f(x) = 2−n
∑
u∈Fn

2

W (f)(u) · (−1)〈u,x〉. (3.2)

At that point we do a short insertion about Hadamard matrices. Furthermore, we
define the Kronecker product which we use to introduce Sylvester-Hadamard matrices.
This leads us to express the Walsh transform in terms of Sylvester-Hadamard matrices.

Definition 3.4. A matrix H of order n taking only the values in the set {1,−1} will be
called Hadamard matrix if H ·H t = n · In, where H t is the transpose of H and In is
the n× n identity matrix.
In particular, the product of two distinct rows of H is zero.

Since H−1 = 1
n
H t, we also have H t ·H = n ·In. Wallis, Seberry and Street [43] showed

that if n is the order of an Hadamard matrix then n is divisible by 1, 2 or 4.
Next we introduce the Kronecker product of matrices.

Definition 3.5. If A = (aij) is a m ×m matrix and B = (bij) is a n × n matrix over
any field, the Kronecker product of A and B is the mn ×mn matrix obtained from
A by replacing every entry aij by aijB. This product is written as

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB

 = (aijB).
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The Kronecker product is not commutative. However, it satisfies the following prop-
erties:

1. (A⊗B)⊗ C = A⊗ (B ⊗ C) (Associativity)

2. (A+B)⊗ C = A⊗ C + A⊗B (Distributivity)

3. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Using the Kronecker symbol, we can define a special kind of Hadamard matrix as
follows:

Definition 3.6. The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of
order 2n, denoted by Hn, is generated by the recursive relation

Hn =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
= H1 ⊗Hn−1,

for n = 1, 2, . . . and H0 = (1).

With this definition we are able to express the Walsh transform in terms of Sylvester-
Hadamard matrices, giving us W (f) = f ·Hn, since (−1)〈u,v〉 is the entry on the position
(u, v) ∈ Fn2×Fn2 , in the matrix Hn. Additionally, we can easily express the inverse Walsh
transform as f = 2−nW (f) ·Hn.

Next we collect some properties concerning the Walsh transform.
The following lemma shows the connection between the Walsh transform of two Boolean
functions where one function is obtained by an affine transformation of the input coor-
dinates.

Lemma 3.7. [10] If the Boolean function f can be obtained from g by an affine trans-
formation of the input, that is

g(v) = f(Av ⊕ b),

with A an invertible matrix and b ∈ Fn2 , then the Walsh transform of f and g are related
by

W (g)(u) = ±W (f)(uA−1).

Proof. First,

W (g)(u) =
∑
v∈Fn

2

(−1)〈u,v〉g(v) =
∑
v∈Fn

2

(−1)〈u,v〉f(Av ⊕ b).

By setting v = A−1w ⊕ A−1b and u′ = uA−1, we get

W (g)(u) =
∑
w∈Fn

2

(−1)〈u,A
−1w〉(−1)〈u,A

−1b〉f(w)

= ±
∑
w∈Fn

2

(−1)〈u
′,w〉f(w) = ±W (f)(u′).
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Furthermore, we observe the relationship between the Walsh transform of a Boolean
function and its sign function which was introduced by Forré [14].

Lemma 3.8. Let f̂(x) = (−1)f(x), then

W (f̂)(u) = −2W (f)(u) + 2nδ(u),

which is equivalent to

W (f)(u) = 2n−1δ(u)− 1

2
W (f̂)(u),

where

δ(u) =

{
1 for u = 0

0 else

is the Dirac symbol.

Proof. We start from the left-hand side of the first equation and obtain

W (f̂)(u) =
∑
x∈Fn

2

(−1)f(x)⊕〈u,x〉

=
∑
x∈Fn

2

(1− 2f(x)) · (−1)〈u,x〉

=
∑
x∈Fn

2

(−1)〈u,x〉 − 2
∑
x∈Fn

2

f(x)(−1)〈u,x〉

= 2nδ(u)− 2W (f)(u)

by definition 3.1 and lemma 3.2.

The following lemmas provide us with some properties satisfied by the Walsh trans-
form.

Lemma 3.9. The following statements are true:

1. W (f̂ ⊕ 1)(u) = −W (f̂)(u).

2. If g(x) = f(x) ⊕ αa(x), where αa(x) =
∑n

i=1 aixi = 〈a, x〉 is the linear function,

then W (ĝ)(u) = W (f̂)(u⊕ a).

3. If g(x) = αa(x)⊕ c is the affine function, then W (f̂ ⊕ g)(u) = (−1)cW (f̂)(u⊕ a).

Proof.

1.

W (f̂ ⊕ 1)(u) =
∑
x∈Fn

2

(−1)f(x)⊕1⊕〈u,v〉

= −
∑
x∈Fn

2

(−1)f(x)⊕〈u,v〉 = −W (f̂)(u).
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2.

W (ĝ)(u) =
∑
x∈Fn

2

(−1)f(x)⊕αa(u)⊕〈u,x〉

=
∑
x∈Fn

2

(−1)f(x)⊕〈(u⊕a),x〉 = W (f̂)(u⊕ a).

3.

W (f̂ ⊕ g)(u) =
∑
x∈Fn

2

(−1)f(x)⊕αa(u)⊕c⊕〈u,x〉

= (−1)c
∑
x∈Fn

2

(−1)f(x)⊕〈(u⊕a),x〉 = (−1)cW (f̂)(u⊕ a).

The addition of an affine function causes, except for the sign, a permutation of the
spectrum.

Corollary 3.10. In particular W (f̂)(u) is always even and we have

−2n ≤ W (f̂)(u) ≤ 2n.

A classic property of the Walsh transform is to be an isomorphism from the set of the
sign functions on Fn2 , endowed with the so-called convolution product (denoted by ∗),
into this same set, endowed with the usual product. The notion of the convolution is
given within the next definition.

Definition 3.11. Let f and g be any Boolean function on Fn2 . The convolution of f and
g is defined by

(f ∗ g) (x) =
∑
y∈Fn

2

f(y)g(x⊕ y).

Proposition 3.12. Let f and g be any Boolean function on Fn2 . We have:

W (f ∗ g) = W (f) ·W (g). (3.3)

Consequently:

W (f) ∗W (g) = 2nW (f · g). (3.4)
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Proof. We have

W (f ∗ g) =
∑
x∈Fn

2

(f ∗ g)(x) · (−1)〈u,x〉

=
∑
x∈Fn

2

∑
y∈Fn

2

f(y)g(x⊕ y) · (−1)〈u,x〉

=
∑
x∈Fn

2

∑
y∈Fn

2

f(y)g(x⊕ y) · (−1)〈u,y〉⊕〈u,(x+y)〉

=

∑
y∈Fn

2

f(y) · (−1)〈u,y〉

 ·
∑
x∈Fn

2

g(x⊕ y) · (−1)〈u,(x⊕y)〉


=

∑
y∈Fn

2

f(y) · (−1)〈u,y〉

 ·
∑
x∈Fn

2

g(x) · (−1)〈u,x〉


= W (f) ·W (g).

Thereby, the first equality is proven.
We recall the property W (W (f)) = 2nf . Therefore, we obtain W (W (f) ∗ W (g)) =
22nf · g. Again, using the property we get W (f) ∗W (g) = 2nW (f · g).

Equation (3.4) applied at x = 0 gives

W (f) ∗W (g)(0) = 2nW (f · g)(0) = 2n
∑
x∈Fn

2

f(x)g(x) = 2nf ∗ g(0). (3.5)

Taking f = g in (3.5), we obtain Parseval’s equation. Parseval’s equation will be a useful
tool to prove some of the following results.

Corollary 3.13 (Parseval’s equation). For any Boolean function f in n variables, the
following equation holds∑

u∈Fn
2

(
W (f̂)(u)

)2

= 22n. (3.6)

Proof.∑
u∈Fn

2

(
W (f̂)(u)

)2

=
∑
u∈Fn

2

∑
x∈Fn

2

∑
y∈Fn

2

(−1)f(x)⊕f(y)⊕〈u,(x⊕y)〉

=
∑
x∈Fn

2

∑
y∈Fn

2

(−1)f(x)⊕f(y)
∑
u∈Fn

2

(−1)〈u,(x⊕y)〉

︸ ︷︷ ︸
2nδx(y)

= 2n
∑
x∈Fn

2

(−1)2f(x) = 22n,
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where

δx(y) =

{
1 if y = x

0 if y 6= x.

The following lemma is a similar result to Parseval’s equation.

Lemma 3.14.
∑

u∈Fn
2
W (f̂)(u)W (f̂)(u⊕ v) =

{
22n if v = 0

0 if v 6= 0.

Proof. The proof is straightforward and follows by lemma 3.2 and the fact f̂(w)2 = 1∑
u∈Fn

2

W (f̂)(u)W (f̂)(u⊕ v) =
∑

u,w∈Fn
2

(−1)〈u,w〉f̂(w)
∑
x∈Fn

2

(−1)〈(u⊕v),x〉f̂(x)

=
∑

w,x∈Fn
2

(−1)〈v,x〉f̂(w)f̂(x)
∑
u∈Fn

2

(−1)〈u,(w⊕x)〉

= 2n
∑
w∈Fn

2

(−1)〈v,w〉f̂(w)2 = 2n
∑
w∈Fn

2

(−1)〈v,w〉.

The case v = 0 gives us Parseval’s equation.
As mentioned earlier we can state a relation between the Walsh transform of the

autocorrelation function, c.f. definition 2.14, and the square of the Walsh transform of
the real-valued function. This fact is stated by the Wiener-Khintchine Theorem.

Theorem 3.15. A Boolean function on Fn2 satisfies

W (r̂)(t) = W (f̂)2(t),

for all t ∈ Fn2 .

Proof. According to the definition of the autocorrelation function, we obtain

W (r̂)(t) =
∑
s∈Fn

2

r̂(s) · (−1)〈t,s〉 =
∑
s∈Fn

2

∑
x∈Fn

2

(−1)f(x)⊕f(x⊕s)⊕〈t,s〉


=
∑
x∈Fn

2

∑
s∈Fn

2

(−1)f(x)⊕f(x⊕s)⊕〈t,s〉

 .
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Since Fn2 is invariant under any transformation, we may replace s by x⊕ s in the second
sum. Hence, we obtain

W (r̂)(t) =
∑
x∈Fn

2

∑
s∈Fn

2

(−1)f(x)⊕f(s)⊕〈t,(x⊕s)〉


=

∑
x∈Fn

2

(−1)f(x)⊕〈t,x〉

∑
s∈Fn

2

(−1)f(s)⊕〈t,s〉


=

∑
x∈Fn

2

(−1)f(x)⊕〈t,x〉

2

= W (f̂)2(t).

Definition 3.16. The spectral radius of a Boolean function f : Fn2 → F2 is defined by

Rf = max{|W (f̂)(u)| : u ∈ Fn2}.

This definition provides a measure for linearity. Obviously, the linearity is upper
bounded by 2n ≥ Rf by corollary 3.10. The upper bound is only attainable if f is affine.

Theorem 3.17. For a Boolean function f : Fn2 → F2 the spectral radius is

Rf ≥ 2
n
2 ,

and the equality holds if and only if W (f̂)2 = 2n is constant.

The class of functions for which equality holds are known as bent functions. We will
study those functions intensively in chapter 6.

Next, we provide a result about the nonlinearity of a Boolean function in terms of
their Walsh transform. Therefore, we use the result that we can deduce from the Walsh
transform, being that W (f̂)(u) is equal to the number of zeros minus the number of
ones in the binary vector f ⊕αu, where αu is the linear function αu(v) =

∑n
i=1 uivi with

u = (u1, . . . , un) and v = (v1, . . . , vn). Thus, we have

W (f̂)(u) = 2n − 2d(f,
n∑
i=1

uivi)

or

d(f,
n∑
i=1

uivi) =
1

2
(2n −W (f̂)(u)).

We also can write,

d(f, 1⊕
n∑
i=1

uivi) =
1

2
(2n +W (f̂)(u)).

This proves the following theorem.
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Theorem 3.18. The nonlinearity of f is determined by the Walsh transform of f , that
is,

Nf = 2n−1 − 1

2
max
u∈Fn

2

|W (f̂)(u)|.

Thus, it is possible to achieve high nonlinearity if the maximal Walsh-coefficient is of
little value.

3.2. Walsh Transform on Subspaces

In this section we introduce a result which was given by Lechner [17]. The theorem states
the so-called Poisson Summation Formula, which is an equation between the Walsh
transform of a real-valued function on Fn2 and a function f restricted to an arbitrary
subspace of Fn2 .

Theorem 3.19. Let f be a real-valued function on Fn2 and W (f) be its Walsh transform.
Let S be an arbitrary subspace of Fn2 and let S⊥ be the dual (annihilator) of S, that is,

S⊥ = {x ∈ Fn2 |〈x, s〉 = 0 for all s ∈ S}.
Then∑

u∈S

W (f)(u) = 2dimS
∑
u∈S⊥

f(u).

Proof. We have∑
u∈S

W (f)(u) =
∑
u∈S

∑
v∈Fn

2

f(v) · (−1)〈u,v〉


=
∑
v∈Fn

2

f(v)

(∑
u∈S

(−1)〈u,v〉

)
= 2dimS

∑
v∈S⊥

f(v),

by using lemma 3.2.

The following corollary was discovered independently by Duvall and Mortick [13].

Corollary 3.20. For any Boolean function f : Fn2 → F2,∑
u≤v

W (f)(u) = 2wt(v)
∑
u≤v

f(u),

where u ≤ v means that if ui = 1, then vi = 1, 1 ≤ i ≤ n, and v denotes the complement
of the vector v.

Proof. Analogue to theorem 3.19.

These results will be important in chapter 6 where we discuss the degree of bent
functions.
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3.3. The Fast Walsh Transform

The computation of the Walsh transform requires 22n operations (additions and sub-
tractions). Therefore, the question arises whether there is a faster way to obtain the
Walsh-coefficients. MacWilliams and Sloane [21, p.422] dealt with this question and
came up with a description of the fast Walsh transform, which is a discrete version of
the fast Fourier transform.

Theorem 3.21. The Sylvester-Hadamard matrix (3.6) Hn can be decomposed as

Hn = M (1)
n M (2)

n · · ·M (n)
n ,

where M
(i)
n = I2n−i ⊗H1 ⊗ I2i−1 with 1 ≤ i ≤ n and Im is the m×m identity matrix.

Proof. We prove the theorem by induction on n. For n = 1 the result is obvious. Now
we assume the result is true for n. Then for 1 ≤ i ≤ n:

M
(i)
n+1 = I2(n+1)−i ⊗H1 ⊗ I2i−1

= I2 ⊗ I2n−i ⊗H1 ⊗ I2i−1 = I2 ⊗M (i)
n

and M
(n+1)
n+1 = H1 ⊗ I2n .

Therefore, we can calculate:

M
(1)
n+1 · · ·M

(n+1)
n+1 = (I2 ⊗M (1)

n+1) · · · (I2 ⊗M (n)
n+1)(H1 ⊗ I2)

= H1 ⊗ (M
(1)
n+1 · · ·M

(n)
n+1)

= H1 ⊗Hn = Hn+1

Let us observe an example given by MacWilliams and Sloane [21].

Example 7. For n = 2 we have to compute the matrices

M
(1)
2 = I21 ⊗H1 ⊗ I20 =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


and

M
(2)
2 = I20 ⊗H1 ⊗ I21 =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .

Then we can calculate

M
(1)
2 M

(2)
2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


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The above given sparse matrix method enables one to compute the Walsh spectrum
of the sign function using only n2n operations [21].
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4. Correlation Immune Boolean
Functions

Correlation immune functions were introduced by Siegenthaler [40] in order to protect
some shift register based on stream ciphers against correlation attacks.

4.1. Basic Properties

Definition 4.1. [40] A Boolean function f in n variables is said to be correlation im-
mune of order k, 1 ≤ k ≤ n, if for any fixed subset of k variables the probability that,
given the value of f(x), the k variables have any fixed set of values, is always 2−k, no
matter what the choice of the fixed set of k values is. In other words, f is correlation
immune of order k if its values are statistically independent of any subset of k input
variables.

We can formulate the definition of correlation immunity to an equivalent information
theory condition.
If the chosen subset of k variables is {x(i1), x(i2), . . . , x(ik)}, then the above definition
of correlation immunity of order k is equivalent to the information theory condition that
the information obtained about the values of x(i1), x(i2), . . . , x(ik) given f(x) is zero.

Now we collect some useful equivalent conditions to correlation immunity of order 1
given by [10].

Lemma 4.2. A function f in n variables is correlation immune of order 1 if and only
if any of the following conditions hold.

(i) If supp(f) = {x ∈ Fn2 |f(x) = 1}, then for each 1 ≤ i ≤ n, we have |{x ∈ supp(f)|xi = 1}| =
| supp(f)|

2
.

(ii) For each 1 ≤ i ≤ n, f(x)⊕ xi is a balanced function.

(iii) For each 1 ≤ i ≤ n, Pr(xi = 1|f(x) = 1) = 1
2

= Pr(xi = 0|f(x) = 1).

(iv) Let f0i and f1i denote the functions in n − 1 variables obtained from f by setting
xi = 0 or 1, respectively. Then for each i = 1, . . . , n, the functions f0i and f1i have
the same Hamming-weight.

(v) All the Walsh transforms

W (f̂)(u) =
∑
x∈Fn

2

(−1)f(x)⊕〈u,x〉, wt(u) = 1,
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are equal to zero.

(vi) For each i = 1, 2, . . . , n, Pr(f(x) = 1|xi = 1) = Pr(f(x) = 1|xi = 0) = wt(f)
2n

Example 8. We take the following 3-variable Boolean function f(x) = x1 ⊕ x1x2 ⊕
x1x3 ⊕ x2x3 ⊕ 1. Thus, we obtain the truth table

x ∈ F3
2 f(x)

000 1
001 1
010 1
011 0
100 0
101 1
110 1
111 1

We use lemma 4.2 (v) and compute all Walsh-coefficients with wt(u) = 1. Hence, we
obtain that all Walsh-coefficients are equal zero. Therefore, the given Boolean function
is correlation immune of order 1.

Furthermore, we give an extension of lemma 4.2(v) with a short proof given by
Brynielsson as reported in Simmons [41].

Lemma 4.3. A function f in n variables is correlation immune of order k, 1 ≤ k ≤ n,
if and only if all of the Walsh transforms

W (f̂)(u) =
∑
x∈Fn

2

(−1)f(x)⊕〈u,x〉, 1 ≤ wt(u) ≤ k,

are equal zero.

Proof. The proof is based on the fact that the Walsh transform W (f̂)(u) is the cross
correlation between f and the linear function αu. Let the k-vector y be defined by

y = (x(i1), x(i2), . . . , x(ik)) ,

where x(i1), x(i2), . . . , x(ik) are the variables in αu. Then we focus on the Walsh trans-
form in k variables of the conditional probability Pr(y|z), where z is a possible value of
f(x). By the definition of the expectation follows∑

y

Pr(y|z)(−1)〈u,x〉 = E[(−1)〈u,x〉|f(x) = z] = E[(−1)〈u,x〉] =
∑
y

Pr(y)(−1)〈u,x〉.

The equality follows by our correlation immunity hypothesis. Thus, Pr(y|z) and Pr(y)
are identical since their Walsh transforms are identical. Consequently, the cross corre-
lation between f(x) and αu(x) is zero, which gives the statement.
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It follows from lemma 4.3 that the functions f(x) and αu(x) are statistically indepen-

dent if and only if the Walsh transform W (f̂)(u) = 0.

Remark. We note that the original proof was given by Xiao and Massey [46]. Sarkar
[37] gave another noteworthy proof which is based on linear algebra and combinatorics.

Now, we obtain the correlation value c(f, αu). Therefore, we recall that the Hamming-
distance between two Boolean functions f, g : Fn2 → {1,−1} is tied up with the cross
correlation between f and g which is defined as

c(f, g) =
#{x ∈ Fn2 |f(x) = g(x)} −#{x ∈ Fn2 |f(x) 6= g(x)}

2n
.

Now we use an arbitrary linear function αu. Hence, we get

c(f, αu) = 2−nW (f̂)(u). (4.1)

Thus, lemma 4.3 states that achieving correlation immunity for f is the same as getting
zero correlation of f with certain linear functions αu. It is impossible to guarantee that
f will not have a nonzero correlation with any linear function. This means we cannot
achieve c(f, αu) = 0 for every u. This follows from the following lemma, which was first
proven by Meier and Staffelbach [26].

Lemma 4.4. For any Boolean function f the total square correlation of f with the set
of all linear functions is equal to one, that is∑

u∈Fn
2

c(f, αu)
2 = 1.

Proof. By equation (4.1) we have∑
u∈Fn

2

c(f, αu)
2 = 2−2n

∑
u∈Fn

2

W (f̂)(u)2,

then using Parseval’s equation (3.6) and the statement follows immediately.

As a result of lemma 4.4 and equation (4.1), we shift our focus to seeking those Boolean

functions of which the largest possible value of |W (f̂)(u)| is as small as possible. These
functions are the so-called perfect nonlinear functions which were introduced by
Meier and Staffelbach [26]. It is a well-known result that the class of perfect nonlinear
functions coincides with the class of bent functions. This result can be found in 6.19.

4.2. Construction of Correlation Immune Functions

In this section we observe methods to construct correlation immune functions. First, we
adopt a terminology which was introduced by Chor et al. [9].
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Definition 4.5. A Boolean function in n variables which is balanced and correlation
immune of order k is said to be a k-resilient function.

Example 9. We consider F4
2 and take the Boolean function f(x) = x1⊕x2⊕x3. It is easy

to verify that the function is balanced and correlation immune of order 2. Altogether,
it follows that the function is a 2-resilient function.

Resiliency has been characterized by Xiao and Massey [46] through the Walsh trans-
form.

Theorem 4.6. Any Boolean function in n variables is k-resilient if and only if W (f̂)(u) =
0 for all u ∈ Fn2 such that wt(u) ≤ k. Equivalently, f is k-resilient if and only if it is
balanced and W (f)(u) = 0 for all u ∈ Fn2 such that 0 < wt(u) ≤ k.

Proof. See [2].

Before we start to construct correlation immune functions we recall that a Boolean
function cannot simultaneously have too many cryptographically desirable properties.
Siegenthaler [40] introduced a useful theorem which describes the relation between high
order correlation immunity and high algebraic degree for a Boolean function, and we
follow the more simple proof of Sarkar [10].

Theorem 4.7. If f is a Boolean function in n variables, which is correlation immune
of order k, then the degree of f is at most n − k. If f is also balanced and k < n − 1,
then the degree is at most n− k − 1.

Proof. A truth table for f(x1, . . . , xn) is an array with 2n rows and n + 1 columns.
Clearly, each of the first n columns has values for one of the variables xi and the first n
entries of the 2n rows are the coordinates of all n-vectors in lexicographical order. The
last column gives the output values f(x1, . . . , xn).

Let f be correlation immune of order k. If we choose any k variables and make these
the leftmost ones in the truth table, then the last column of the truth table is the
concatenation of 2k strings of the length 2n−k and of equal Hamming-weight (follows
from generalization to order k of lemma 4.2(iv)). Now we suppose that the degree of f
is n− i for some i < k and deduce a contradiction.

Since f is correlation immune of order k, it is also correlation immune of order i and
i + 1. Also, by our assumption, the algebraic normal form has at least one term T of
degree n−i while having no terms of greater degree. Let y1, . . . , yi be the variables not in
T and let y be any other variable from {x1, . . . , xn} − {y1, . . . yi}. We arrange the truth
table for f so that the variables y1, . . . , yi, y appear as the leftmost variables in this order.
This gives a division of the output column into 2i+1 strings σ(0), σ(1), . . . σ(2i+1 − 1) in
which all Hamming-weights are equal. We define the strings g(j) = σ(2j)σ(2j + 1) for
all 0 ≤ j ≤ 2i − 1. Then

wt(g(j)) = wt(σ(2j)) + wt(σ(2j + 1)) = 2wt(σ(2j))

33



and therefore wt(g(j)) must be even. The string g(0) of even Hamming-weight is a
function of n − i variables and is obtained from f by setting the variables y1, . . . , yi
equal to 0. The term T does not contain any of the variables y1, . . . , yi and must thus be
in the algebraic normal form of g(0). Hence, g(0) represents a function of n− i variables
with degree n − i. Consequently, this function must have odd Hamming-weight, which
is a contradiction. Thus, the degree equals n− k.

Next, we suppose that f is balanced and has degree n−k for k < n−1. Let T be a term
of degree n− k and let y1, . . . , yk be the variables not in T . If these variables are made
the leftmost variables in the truth table for f , then the output column can be divided
into 2k strings σ(0), σ(1), . . . σ(2k−1) in which the Hamming-weights are equal. Each of
these functions has n − k variables and contains the term T . Hence, each function has
degree n − k and odd Hamming-weight. Let w be the common Hamming-weight of all
strings. Therefore, we have wt(f) = 2kw with w odd. However, f is balanced and hence
wt(f) = 2n−1. Thus, w = 2n−k−1 which is even for k < n − 1. This is a contradiction.
Thus, the degree is equal to n− k − 1.

In the context of counting correlation immune functions Mitchell [29] mentioned a
very simple method for constructing correlation immune functions of order 1. We define
the first half (f(a0), . . . , f(a2n−1−1)) of the function arbitrarily and then we define the
second half of the function by taking the bits of the first half in reverse order. By using
lemma 4.2(i) the function f is correlation immune.
The disadvantage of such a construction is that these functions are not useful for crypto-
graphic applications because it is not easy to obtain other cryptographic properties such
as high nonlinearity. Therefore, we need more specialized constructions which are more
useful for cryptographic applications. Siegenthaler [40] gives a recursive construction for
correlation immune functions of order k as follows:

Theorem 4.8. Let x = (x1, . . . , xn) and suppose that f1(x) and f2(x) are correlation
immune functions of order k such that Pr(f1(x) = 1) = Pr(f2(x) = 1) = p. Then the
function f of n+ 1 variables defined by

f(x, xn+1) = (xn+1 ⊕ 1)f1(x)⊕ xn+1f2(x) (4.2)

is also correlation immune of order k and satisfies Pr(f(x) = 1) = p.

Proof. Let y = (xi(1), . . . , xi(k)) be made up of an arbitrary choice of k of the variables xi
and let y0 = (y1, . . . , yk) be any fixed binary k-vector. Since f1 and f2 are independent
of xn+1 we have either fixed choice of the bit b and i = 1 or 2

Pr(fi = 1|y = y0, xn+1 = b) = Pr(fi = 1|y = y0) = Pr(fi = 1), (4.3)

where the second equality follows from the hypothesis that fi is correlation immune of
order k. Equations (4.2) and (4.3) imply

Pr(fi = 1|y = y0, xn+1 = 1) = Pr(f1 = 1)
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and

Pr(fi = 1|y = y0, xn+1 = 0) = Pr(f2 = 1).

The two right-hand-side probabilities are equal to p due to our hypotheses. Therefore,
we obtain

Pr(fi = 1|y = y0, xn+1 = b) = Pr(f = 1) = p.

This implies that the value of f is independent of the choice of any subset of k of the
n+ 1 input variables. Thus, f is correlation immune of order at least k.

Remark. We note that the correlation immunity order is not increased in this construc-
tion.

From a cryptographic viewpoint, theorem 4.8 is most interesting when p = 1
2
. The

result of which is that f1 and f2 are k-resilient. In this case Camion et al. [1] provide a
more precise formulation of theorem 4.8.

Theorem 4.9. Let x = (x1, . . . , xn) and suppose that f1(x), f2(x) and f(x, xn+1) are
related by equation (4.2). Then for k < n − 1, f is (k + 1)-resilient if and only if the
following two conditions hold:

(i) f1 and f2 are k-resilient functions

(ii) for all v ∈ Fn2 with wt(v) = k + 1 we have the Walsh transform equation

W (f1)(v) +W (f2)(v) = 0. (4.4)

Also, if the degrees of f , f1 and f2 are equal (thus, the degree of f1 + f2 is less than the
degree of f), then f has its maximum degree n+ 1− (k+ 2) if and only if f1 and f2 have
their maximum degree n− (k + 1).

Proof. Let w = (v, d) be a vector in Fn+1
2 . Let x = (x1, . . . , xn). We obtain

W (f)(w) =
∑

(x,xn+1)∈Fn+1
2

f(x, xn+1) · (−1)〈v,x〉⊕d·xn+1

=
∑

x∈Fn
2 ,xn+1=0

f1(x) · (−1)〈v,x〉 +
∑

x∈Fn
2 ,xn+1=1

f2(x) · (−1)〈v,x〉⊕d

= W (f1)(v) + (−1)dW (f2)(v). (4.5)

First, we suppose that f satisfies (i) and (ii). Then from equation (4.5) and (i) we have

W (f)(0) = W (f1)(0) + (−1)0W (f2)(0) = 2n,

therefore, f is balanced. If w = (v, d) and 0 < wt(v) < k+1, then we obtain by equation
(4.5) and (i) that W (f)(w) = 0. Furthermore, if w = (v, d) with wt(v) = k + 1 and
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d = 0, then we obtain by equation (4.5) and (ii) that W (f)(w) = 0. Hence, we have
that f is (k + 1)-resilient.

Conversely, we suppose that f is (k + 1)-resilient. Then for all w = (v, d) such that
1 ≤ wt(w) ≤ k + 1, equation (4.5) yields to

0 = W (f1)(v) + (−1)dW (f2)(v). (4.6)

For w = (0, 1), equation (4.6) gives W (f1)(v) = W (f2)(v). Since f is balanced for w = 0,
equation (4.5) gives W (f)(0) = wt(f) = 2n = W (f1)(0) +W (f2)(0). Thus f1 and f2 are
balanced.
If 0 < wt(v) < k + 1, then we obtain by equation (4.6) that W (f1)(v) = W (f2)(v) for
d = 1 and W (f1)(v) = −W (f2)(v) for d = 0. Therefore, W (f1)(v) = W (f2)(v) = 0, so
(i) is satisfied.
If wt(v) = k + 1 and d = 0, then we obtain (ii) from (4.6).
The last statement of the theorem follows immediately from equation (4.2) and theorem
4.7. Each function f1 and f2 is k-resilient and have degree at most n − (k + 1). Using
equation (4.2) we deduce that f has its maximum degree n+ 1− (k + 2).
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5. Avalanche and Propagation
Criterion

The Strict Avalanche Criterion (SAC for short) was introduced by Webster and Tavares
[44]. They write [44]: “ If a function is to satisfy the strict avalanche criterion, then
each of its output bits should change with a probability of one half whenever a single
input bit x is complemented to x.”
The SAC is a useful property for Boolean functions in cryptographic applications. This
means that if a Boolean function is satisfying the SAC, a small change in the input leads
to a large change in the output (an avalanche effect). This property is essential in a
cryptographic context due to the fact that we cannot infer its input from its output. In
addition to SAC we study the so-called Propagation Criterion (PC for short) which was
introduced by Preneel et al. [34].

5.1. The Strict Avalanche Criterion

Definition 5.1. A Boolean function f in n variables is said to satisfy the Strict
Avalanche Criterion if changing any one of the n bits in the input x results in the
output of the function being changed for exactly half of the 2n−1 vectors x with the
changed input bit.

This property has an obvious desirability. Since knowing the function value for a given
input an attacker does not gain any information about the function value of a slightly
different input value.

We introduce the important notation of the directional derivative.

Definition 5.2. For f : Fn2 → F2 and a ∈ Fn2 , a 6= 0, we define the function fa : Fn2 → F2

by

fa(x) = f(x)⊕ f(x⊕ a).

fa is called the directional derivative of f in the direction a.

Now we are able to express the SAC in connection with the directional derivative.

Lemma 5.3. A Boolean function f : Fn2 → F2 satisfies the SAC if and only if the function
f(x)⊕ f(x⊕ a) is balanced for every a in Fn2 with Hamming-weight 1.
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Proof. We assume that f fulfills the SAC, then exactly half of the x ∈ Fn2 satisfy f(x) 6=
f(x⊕ a) for every a ∈ Fn2 with wt(a) = 1. This means that

f(x)⊕ f(x⊕ a) = 1 for half the x ∈ Fn2 , and

f(x)⊕ f(x⊕ a) = 0 for the other half.

Summing up over x ∈ Fn2 leads us to
∑

x∈Fn
2
f(x)⊕ f(x⊕ a) = 2n−1. So, f(x)⊕ f(x⊕ a)

is balanced. For the converse we reverse the arguments.

Lemma 5.3 provides a straightforward way to verify the SAC by computation the
output values of f .

Let us focus on an example of a SAC function.

Example 10. We take the 3-variables Boolean function f(x) = x1x2 ⊕ x1x3 ⊕ x2x3 ⊕
x1 ⊕ 1. Clearly, the vectors with Hamming-weight one are the three unit-vectors in F3

2.
So we compute the following table.

x ∈ F3
2 f(x) f(x⊕ e1) f(x⊕ e2) f(x⊕ e3)

000 1 0 1 1
001 1 1 0 1
010 1 1 1 0
011 0 1 1 1
100 0 1 1 1
101 1 1 1 0
110 1 1 0 1
111 1 0 1 1

Next we compute the values for f(x)⊕ f(x⊕ ei) for i ∈ {1, 2, 3}.

x ∈ Fn2 f(x)⊕ f(x⊕ e1) f(x)⊕ f(x⊕ e2) f(x)⊕ f(x⊕ e3)
000 1 0 0
001 0 1 0
010 0 0 1
011 1 1 1
100 1 1 1
101 0 0 1
110 0 1 0
111 1 0 0

By lemma 5.3, we see that the Boolean function fulfills the SAC because for each
i ∈ {1, 2, 3}, f(x)⊕ f(x⊕ ei) is balanced.
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Furthermore, we give an alternative formulation of lemma 5.3 using the autocorrelation
function in a slightly different way as in definition 2.14

Definition 5.4. The autocorrelation function of a Boolean function in n variables is
defined as

rf (a) =
2n−1∑
i=0

f(vi)⊕ f(vi ⊕ a),

for all a ∈ Fn2 .

The autocorrelation function is simply the sum over all values of the directional deriva-
tive f(x)⊕ f(x⊕ a) as x runs through Fn2 .

Now we are able to restate lemma 5.3 in terms of the autocorrelation function.

Lemma 5.5. A Boolean function f in n variables is SAC if and only if the autocorre-
lation function rf (a) is equal to 2n−1 for all a ∈ Fn2 with Hamming-weight 1.

5.2. The Strict Avalanche Criterion of Higher Order

In this section we study a generalization of the SAC defined by Forré [14], which she
named the SAC of higher order.

Definition 5.6. A Boolean function f(x) in n variables is said to satisfy the Strict
Avalanche Criterion of order k (SAC(k) for short) if fixing any k of the n bits in the
input x results in a Boolean function in the remaining n−k variables which satisfies the
SAC, where 0 ≤ k ≤ n− 2.

It is required that 0 ≤ k ≤ n− 2 since the SAC is not defined for 1-variable functions.
A function which satisfies the SAC as originally defined is a SAC(0) function.
Forré did not notice that if a function is SAC(k) for k > 0, then it is also SAC(j) for
any j = 0, 1, . . . , k − 1. This was pointed out by Lloyd [19].

Lemma 5.7. Suppose f is a Boolean function in n > 2 variables which satisfies the
SAC of order k, 1 ≤ k ≤ n − 2. Then f also satisfies the SAC of order j for any
j = 0, 1, . . . , k − 1.

Proof. We prove that if f satisfies the SAC of order k, then f also satisfies the SAC of
order k − 1. The proof follows by induction.
The base step is trivial. For the inductive step, let g be a function in n− k+ 1 variables
obtained by fixing k − 1 variables in f . We need to prove that g is a SAC function. By
lemma 5.3 it suffices to show

S =
2n−k+1−1∑

i=0

g(vi)⊕ g(vi ⊕ a) = 2n−k, (5.1)
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for all a ∈ Fn−k+1
2 with Hamming-weight 1. Without loss of generality, we may take

a = (0, . . . , 0, 1). Thus, vi and vi ⊕ a have the same first bit, so we may split the above
sum S into two sums. One sum in which the first bit of vi is zero and one sum in which
the first bit is one. Then we denote with g0 and g1 the functions obtained from g by
fixing the first input bit as 0 and 1, respectively, and let a∗ be the vector made up of
the least n− k significant bits of a. Then we have

S =
2n−k−1∑
i=0

g0(vi)⊕ g0(vi ⊕ a∗)⊕
2n−k−1∑
i=0

g1(vi)⊕ g1(vi ⊕ a∗).

Both g0 and g1 are obtained from f by fixing k variables, so by hypothesis they are both
SAC functions. Therefore, both of the above sums are 2n−k−1, and this proves equation
(5.1).

Lemma 5.8. If f is a Boolean function in n > 2 variables and deg(f) = n, then rf (a),
as defined in definition 5.4, does not take on the value 2n−1 for any a ∈ Fn2 .

This lemma is needed to prove the next corollary which is given by Preneel et al. [34].

Corollary 5.9. If f is a Boolean function in n > 2 variables and deg(f) = n, then f
does not satisfy the SAC.

Proof. We prove that if rf (a) = 2n−1 for some a ∈ Fn2 , then the Hamming-weight wt(f)
is even. This is a contradiction since deg(f) = n implies that wt(f) is odd, cf. lemma
5.8. We suppose that rf (a) = 2n−1. Then

wt(f) ≡
2n−1∑
i=0

f(vi) ≡
2n−1∑
i=0

f(vi ⊕ a)

≡ 1

2

2n−1∑
i=0

f(vi)⊕ f(vi ⊕ a)

≡ rf (a)

2
≡ 2n−2(mod 2).

Since n > 2, we have that wt(f) is even and the contradiction follows. Then using
lemma 5.8 and it follows that f does not satisfy the SAC.

Now we turn to the issue of counting SAC functions. First, we shall prove a result
conjectured by Forré [14].

Theorem 5.10. There are 2n+1 SAC(n− 2) Boolean functions in n variables.

To prove the theorem we need the following lemma.

Lemma 5.11. Suppose n ∈ Z, n ≥ 2 and f : Fn2 → F2. Then f satisfies the SAC of
order (n− 2) if and only if for all S ⊆ {1, 2 . . . , n},

f̂(eS) = (−1)
|S|(|S|−1)

2 (f̂(0))(|S|+1)
∏
r∈S

f̂(e{r}),

where eS denotes the element of Fn2 which satisfies ei = 1⇔ i ∈ S.
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Proof. See [19].

Proof of theorem 5.10. By lemma 5.11, the set of functions f : Fn2 → F2 satisfying the
SAC of order (n− 2) is the same as the set of functions f : Fn2 → F2 satisfying the set of
equations

f̂(eS) = (−1)
|S|(|S|−1)

2 (f̂(0))(|S|+1)
∏
r∈S

f̂(e{r}),

with the notation of lemma 5.11.
Now, since we can write any element in Fn2 as eS for exactly one set S ⊆ {1, 2, . . . n}, this
determines the value of g(x) for all values of x with Hamming-weight greater than 1 in
terms of the values of g(x) for values of x with Hamming-weight less than or equal to 1.
In other words, if we choose values for g(0) and for g(e{r}) for all r ∈ {1, . . . , n}, then g
is completely determined on the whole of Fn2 . Thus, there are 2n+1 ways to choose such
a function, and so the size of the set of these functions is 2n+1.

Next, we turn to the problem of counting balanced functions satisfying SAC of higher
order. Lloyd [20] first solved the problem but we follow a different approach based on
the paper of Gopalakrishnan and Stinson [15].
Lloyd characterized SAC functions in terms of their algebraic normal form of the function
f . Thus, a function f in n ≥ 2 variables satisfies the SAC of order (n− 2) if and only if
the algebraic normal form is

f(x) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn ⊕
∑

1≤i<j≤n

xixj, (5.2)

for some a0, a1, . . . an ∈ Fn2 .
Now, we proceed to simplify the ANF without loss of generality since f(x) is balanced
if and only if f(x)⊕ 1 is balanced. Hence, we may assume that a0 = 0.
We suppose that exactly r of the coefficients a1, a2, . . . an are ones and the rest are equal
to zero. Let Sn,r denote the number of vectors x ∈ Fn2 such that f(x) = 0, where
0 ≤ r ≤ n. The next lemma gives a recurrence relation for Sn,r.

Lemma 5.12. For n ≥ 2 and 0 ≤ r ≤ n we have

Sn,r = Sn−1,r + Sn−1,r−1. (5.3)

Proof. Renumbering the variables does not affect whether a function is balanced or not,
so we may reduce (5.2) to

f(x) = x1 ⊕ · · · ⊕ xr ⊕
∑

1≤i<j≤n

xixj, (5.4)

for some n, 0 ≤ r ≤ n.
Any vector x ∈ Fn2 has either xr+1 = 0 or xr+1 = 1. We suppose that xr+1 = 0, then the
function f reduces to a function g0 : Fn−1

2 → F2 of which the ANF is

g0(x) = x1 ⊕ · · · ⊕ xr ⊕
∑

1≤i<j≤n,
i,j 6=r+1

xixj,
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and the number of vectors in Fn−1
2 such that g0(x) = 0 is Sn−1,r. Furthermore, we

suppose that xr+1 = 1, then the ANF of the induced function g1 : Fn−1
2 → F2 is

g1(x) = x1 ⊕ · · · ⊕ xr ⊕
∑

1≤i≤n,
i 6=r+1

xi ⊕
∑

1≤i<j≤n,
i,j 6=r+1

xixj

= xr+2 ⊕ xr+3 ⊕ · · · ⊕ xn ⊕
∑

1≤i<j≤n,
i,j 6=r+1

xixj,

and the number of vectors in Fn−1
2 such that g1(x) = 0 is Sn−1,n−r−1. Thus, we have

Sn,r = Sn−1,r + Sn−1,n−r−1. (5.5)

Using the recurrence relation (5.5) to evaluate Sn−1,n−r−1 we get

Sn−1,n−r−1 = Sn−2,n−r−1 + Sn−2,n−1−(n−r−1)−1

= Sn−2,n−r−1 + Sn−2,r−1

= Sn−2,r−1 + Sn−2,(n−1)−(r−1)−1

= Sn−1,r−1.

Substituting this back into (5.5) gives (5.3).

Subsequently, we derive expressions for the boundary conditions Sn,0 and Sn,n. If
r = 0, the ANF (5.4) reduces to

f(x) =
∑

1≤i<j≤n

xixj. (5.6)

We note that the equation (5.6) is symmetric in the n input bits and hence, the value
of f(x) depends only on the Hamming-weight of x. If the Hamming-weight is equal to
k, then

wt(f(x)) =

(
k

2

)
≡ f(x) mod 2.

Since
(
k
2

)
≡ 0 mod 2 if and only if k ≡ 0, 1 mod 4, we have

Sn,0 =
∑

0≤k≤n
k≡0,1 mod 4

(
n

k

)
. (5.7)

Now, when r = n, the ANF (5.4) reduces to

f(x) = x1 ⊕ · · · ⊕ xn ⊕
∑

1≤i<j≤n

xixj. (5.8)
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Once again we observe that equation (5.8) is symmetric in the n input bits and hence, we
have that the value of f(x) depends only on the Hamming-weight of x. If the Hamming-
weight is equal to k, then

wt(f(x)) = k +

(
k

2

)
≡ f(x) mod 2.

Since k +
(
k
2

)
≡ 0 mod 2 if and only if k ≡ 0, 3 mod 4, we have

Sn,n =
∑

0≤k≤n,
k≡0,3 mod 4

(
n

k

)
. (5.9)

The recurrence relation (5.3) with the boundary conditions (5.7) and (5.9) completely
describes Sn,r for n ≥ 1 and 0 ≤ r ≤ n. The next theorem gives an explicit formula for
Sn,r. Prior to this we need the following lemma on binomial coefficients.

Lemma 5.13. We have the following identities:∑
0≤k≤n,

k≡0 mod 4

(
n

k

)
= 2n−2 + 2

n−2
2 cos

(nπ
4

)
∑

0≤k≤n,
k≡1 mod 4

(
n

k

)
= 2n−2 + 2

n−2
2 sin

(nπ
4

)
∑

0≤k≤n,
k≡3 mod 4

(
n

k

)
= 2n−2 − 2

n−2
2 sin

(nπ
4

)

Theorem 5.14. For n ≥ 2 and 0 ≤ r ≤ n we have

Sn,r = 2n−1 − 2
n−1

2 sin

((
r +

7n− 1

2

)
π

2

)
. (5.10)

Proof. From lemma 5.13, the two conditions (5.7) and (5.9) become

Sn,0 = 2n−1 + 2
n−2

2

(
cos
(nπ

4

)
+ sin

(nπ
4

))
(5.11)

Sn,n = 2n−1 + 2
n−2

2

(
cos
(nπ

4

)
− sin

(nπ
4

))
. (5.12)

If r = 0, equation (5.11) is the same as equation (5.10); and if r = n, equation (5.12) is
the same as equation (5.10).
An easy computation shows that Sn,r as given in (5.10) satisfies the recurrence relation
(5.3), and this suffices the theorem.
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Now we are able to prove the main result on counting SAC functions given by Forré
[20].

Theorem 5.15. If n is even, then there are no balanced SAC(n − 2) functions in n
variables.
If n is odd, then exactly the half of the 2n+1 SAC(n − 2) functions in n variables are
balanced.

Proof. With no loss of generality we can reduce the function to the form (5.4). The
function f is balanced if and only if Sn,r = 2n−1. By theorem 5.14, this is true if and
only if

sin

((
r +

7n− 1

2

)
π

2

)
= 0. (5.13)

Now, (5.13) holds if and only if r + 7n−1
2

is an even integer, which is impossible for n
even, since then we do not have an even integer. If n is odd, then we get an even integer
for exactly the half of the n + 1 values r = 0, 1, . . . , n, namely, even r if 7n−1

2
is even,

that is if n ≡ 3 mod 4; and odd r if 7n−1
2

is odd, that is if n ≡ 1 mod 4.

5.3. The Propagation Criterion

This section generalizes the notion of the strict avalanche criterion to the propagation
criterion.

Definition 5.16. A Boolean function f in n variables is said to satisfy the propagation
criterion of degree k (PC(k) for short) if changing any i (1 ≤ i ≤ k) of the n bits in
the input x results in the output of the function being changed for exactly half of the 2n

vectors x.

By definition, we conclude that SAC is identical to PC(1). The function given in
example 10 satisfies PC(2).

The propagation criterion is strongly connected to properties of the autocorrelation
function rf (a) as defined in definition 5.4.

Lemma 5.17. A Boolean function f in n variables satisfies PC(k) if and only if all of
the given values

rf (a) =
∑
x∈Fn

2

f(x)⊕ f(x⊕ a), 1 ≤ wt(a) ≤ k,

of the autocorrelation function are equal 2n−1.

Proof. From the definition of the autocorrelation function rf (a) we have

Pr(f(x) 6= f(x⊕ a)) =
rf (a)

2n
=

1

2
,

so the statement follows from the definition of the PC(k).
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The next lemma restates lemma 5.17 in terms of these directional derivatives (5.2).

Lemma 5.18. A Boolean function f in n variables satisfies PC(k) if and only if all
directional derivatives

fa(x) = f(x)⊕ f(x⊕ a), 1 ≤ wt(a) ≤ k,

are balanced functions.

Proof. With lemma 5.17 and the definition of PC(k) the statement follows immediately.

The following lemma shows the connection that if f satisfies the propagation crite-
rion, then also the concatenation of f with any affine function satisfies the propagation
criterion of the same degree.

Lemma 5.19. If a Boolean function f in n variables satisfies PC(k) for some k, 1 ≤
k ≤ n, then so does f ⊕ g, where g is any affine function in n variables.

5.4. The Propagation Criterion of Higher Order

We can generalize the definition of high order SAC given in section 5.2 to define high
order propagation criterion. The following definitions were introduced by Preneel et al.
[34].

Definition 5.20. A Boolean function f in n variables is said to satisfy the propagation
criterion of degree k and order m if k + m ≤ n and fixing any m of the n bits in the
input x results in a Boolean function in the remaining n −m variables which satisfies
PC(k). For brevity, we may say that such a function is PC(k) of order m.

Clearly, the condition k + m ≤ n is imposed because if m bits are fixed, there are
only n−m variable bits left which can be changed, as the definition of PC(k) requires.
If we removed the condition k + m ≤ n, we could allow m bits to be fixed and the
subsequently k bits to be changed.

Definition 5.21. A Boolean function f in n variables is said to satisfy the extended
propagation criterion of degree k and order m (EPC(k) of order m for short) if
knowledge of m bits of x gives no information about f(x)⊕ f(x⊕ a) for all a ∈ Fn2 with
1 ≤ wt(a) ≤ k.

It follows from the above definitions and lemma 5.18 that PC(k), PC(k) of order
0 and EPC(k) of order 0 all refer to essentially the same. A function which satisfies
PC(k) or EPC(k) of order m also satisfy the corresponding criterion for all orders less
than m.

We can use terms of correlation immunity, cf. section 4.1, to express EPC(k) of order
m > 0.
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Lemma 5.22. A Boolean function f in n variables satisfies EPC(k) of order m > 0 if
and only if all of the directional derivatives

fa(x) = f(x)⊕ f(x⊕ a), 1 ≤ wt(a) ≤ k,

are m-resilient.

Proof. The proof follows by the definitions of EPC(k) of order m and correlation im-
munity of order m by using lemma 5.18.

Lemma 5.23. Let f be a Boolean function in n variables. If f satisfies EPC(k) of
order m > 0, then f satisfies PC(k) of order m > 0. On one hand, the converse is true
for k = 1 and any m > 0. On the other hand, the converse is also true for any k if
m = 1, but is false for k = m = 2.

Proof. [10] The first assertion follows from the definitions.
First, we prove the converse for k = 1. We observe that if f satisfies PC(1) of order m,
then by lemma 5.18 and 5.22 f satisfies EPC(1) of order m if and only if∑

x∈Fn
2 , xi(1)=ai(1),...,xi(m)=ai(m)

f(x)⊕ f(x⊕ ei) = 2n−1 (5.14)

for each unit vector ei, 1 ≤ i ≤ n, and for all choices of the variables xi(1), . . . , xi(m) and
fixed values ai(1), . . . , ai(m). If none of the indices i(j) equals i then, according to lemma
5.18, equation (5.14) is exactly the condition PC(1) of order m. If the index i(j) is equal
to i, then equation (5.14) is exactly the condition for PC(1) of order m− 1, and this is
true by our assumption that f satisfies PC(1) of order m.
To prove the second converse for any k if m = 1, the proof is similar to the one above
based on equation (5.14), which is, however, more simple because one variable xi is fixed.
Finally, we prove the converse is false for k = m = 2. Therefore we define the function

qn = qn(x1, . . . , xn) =
∑

1≤i<j≤n

xixj (5.15)

and show that for n ≥ 4 the function satisfies PC(2) of order 2 but does not satisfy
EPC(2) of order 2. To verify the former condition, we need to examine the directional
derivatives of qn when any two bits are fixed. By symmetric reasons, we may suppose
that the fixed bits are xn−1 and xn. Therefore, the directional derivative is a function
g(x1, . . . , xn−2) of the form

g = qn−2 ⊕ h(x1, . . . , xn−2), (5.16)

where h is an affine function. Now all of the directional derivatives

ga(x) = g(x)⊕ g(x⊕ a), 1 ≤ wt(a) ≤ 2,

are non-constant affine functions and therefore balanced. By using lemma 5.18, qn
satisfies PC(2) of order 2. However, qn does not satisfy EPC(2) of order 2 because
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if a ∈ Fn2 of Hamming-weight 2 has a one in position i and j, then we write for the
directional derivative of qn

qn(x)⊕ qn(x⊕ a) = xi ⊕ xj ⊕ 1.

This function is correlation immune of order 1 but not of order 2. By using lemma 5.22
the function qn does not satisfy EPC(2) of order 2.

The next target obviously is to construct SAC(k) and PC(k) functions. A well-known
fact is that bent functions in n variables are exactly those functions which satisfy PC(n)
because of lemma 5.18 and theorem 6.20(vi). We will construct such functions in section
6.3.1
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6. Bent Boolean Functions

In his paper [36], Rothaus introduced a class of Boolean functions which he named “bent”
functions. These functions are called bent because they are as different as possible from
all affine and linear functions. Bent functions have been extensively studied for their
applications in cryptography and their relations in coding theory.

Definition 6.1. A Boolean function f in n variables is called bent if and only if the
Walsh-coefficients of f̂ are all ±2

n
2 , that is, W (f̂)2 is constant.

Remark. We immediately notice that bent functions exist only for even dimension, so
that is n = 2k.

Let us observe two little examples about bent functions.

Example 11.

1. f(x) = x1x2 on F2
2. Then W (f̂)(u) = ±2.

2. f(x) = 1⊕ x1x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x3 ⊕ x2x4 ⊕ x3x4 on F4
2. Then W (f̂)(u) = ±4.

Further we note the obvious fact that if f is affine, then f cannot be bent, since the
spectral radius is Rf = 2n.

Remark. We note that bent functions also play an important role in coding theory,
especially in the area of Reed-Muller codes.

6.1. Difference Sets

A vast body of work has been devoted to the study of difference sets. Consequently,
this section can only present some basic terminology and is thus mainly based on results
from Dillon [11].

Definition 6.2. Let G be an abelian group of order v and D a subset of G of order k.
D is a (v, k, λ, n)- difference set in G if for every nonzero element g in G the equation
g = di − dj (or did

−1
j in multiplicative notation) has exactly λ different pairs (di, dj) ∈

D ×D, and we define n = k − λ.

We note that the parameters v, k and λ cannot be independently chosen. By definition,
all of the v−1 nontrivial elements inG are represented in λ different ways as the difference
of two elements in D. Simultaneously, there are k(k− 1) possible different ordered pairs
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of elements in D whose difference is not equal zero. Hence, the parameters of a difference
set must satisfy the fundamental relation given by

λ(v − 1) = k(k − 1). (6.1)

We can represent a difference set by an integer matrix [MD], the so-called incidence
matrix.

Definition 6.3. The incidence matrix associated with the subset D is the v×v-matrix
[MD] with entries over F2 defined by

[MD](x, y) =

{
1, if x− y ∈ D
0, otherwise.

As a consequence of the definition for the incidence matrix, Dillon [11] stated a helpful
lemma.

Lemma 6.4. D is a (v, k, λ, n)- difference set if and only if the incidence matrix [MD]
satisfies

[MD]2 = n · Iv + λJ,

where Iv is the v × v-unit matrix and J is the v × v-matrix with all entries 1.

Proof. See [11].

The following lemma shows that the complement of a difference set is also a difference
set.

Lemma 6.5. If D is a (v, k, λ, n)- difference set in G, then its complement D = G−D
is a (v, v − k, v − 2k + λ, n)-difference set in G.

Proof. We show that [MD] is an incidence matrix. We get

[MD]2 = (J − [MD])2 = J2 − 2[MD]J + [MD]2

= vJ − 2kJ + (nIv + λJ)

= nIv + (v − 2k + λ)J.

Thus, [MD] is an incidence matrix. Therefore, the statement follows by using lemma
6.4.

Without loss of generality, this result allows us to assume that k < v
2
. Furthermore,

we are interested in a specific class of difference sets, the so-called Hadamard difference
sets.

Definition 6.6. A (v, k, λ, n)-difference set D satisfying the condition v = 4n = 4(k−λ)
is called Hadamard difference set.
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Let us shortly motivate the condition v = 4n as well as the name Hadamard difference
set.
We consider the matrix [MD∗ ] = J−2[MD] with entries in the set {−1, 1}. Those entries
are obtained by replacing the value zero in [MD] by one and one by minus one. The
matrix [MD∗ ] satisfies

[MD∗ ]
2 = (J − 2[MD])2

= J2 − 2J [MD]− 2[MD]J + 4[MD]2

= vJ − 2kJ − 2kJ + 4(nIv + λJ)

= 4nIv + (v − 4n)J.

Thus, if v = 4n, then the matrix [MD∗ ] has the property [MD∗ ]
2 = v · Iv. As we know,

in general, a matrix A with entries in the set {−1, 1} of size b × b with the property
A2 = b · I is known as a Hadamard matrix. Therefore, we have

Lemma 6.7. A (v, k, λ, n)-difference set is Hadamard if and only if [MD∗ ] = J − 2[MD]
is a Hadamard matrix.

The Hadamard condition essentially determines the size of such a difference set in any
group. The next result was first noted by Menon [28].

Theorem 6.8. A Hadamard difference set has parameters of the form

(v, k, λ, n) = (4N2, 2N2 −N,N2 −N,N2) or (4N2, 2N2 +N,N2 +N,N2).

Proof. See [28].

This leads us to the result that a Hadamard difference set can only exist in a group
of square order.

There are different generalizations of theorem 6.8. We conclude another generalization
presented by Mann [23] in the following form:

Theorem 6.9. Let G be an abelian group of order 2n, D ⊂ G a (v, k, λ, n)-difference
set. Then one of the following holds
D = ∅, k = 0 and λ = 0
D = {e}, k = 1 and λ = 0
D = G \ {e} k = v − 1 and λ = v − 2

k = 2n−1 − 2
n
2
−1 and λ = 2n−2 − 2

n
2
−1

k = 2n−1 + 2
n
2
−1 and λ = 2n−2 + 2

n
2
−1.

Proof. See [23].

Clearly, if D is a particular difference set in the group G, it is easy to obtain many
other difference sets from D. The following observation provides us with some difference
sets which require further definition of the terms equivalent difference sets and multiplier.

50



If D is a (v, k, λ, n)-difference set in the group G, then for all g ∈ G and all automor-
phisms α of G the sets

D + g = {d+ g|d ∈ D}

and

Dα = {dα|d ∈ D}

are also (v, k, λ, n)-difference sets in G.
This motivates the following definition.

Definition 6.10. The difference sets D1 and D2 in the abelian group G are equivalent
if there exists an automorphism α of G such that

Dα
1 = D2 + g (6.2)

for some g ∈ G. In particular, if equation (6.2) holds for D1 = D2 = D, then the group
automorphism α is said to be a multiplier of D. A multiplier of the form

g 7→ gt, t ∈ Z

is called a numerical multiplier.

Mann and McFarland have shown that every multiplier of a difference set must fix
at least one translate of that difference set. We denote with M(D) the subgroup of
multipliers of D in the group of automorphisms in G. It is easy to see that equivalent
difference sets have isomorphic multiplier groups. Indeed, if Dα

1 = D2 +g then M(D1) =
αM(D2)α−1, that is D1 and D2 are isomorphic.

6.2. Characterizations of the Bent Property

If it is not mentioned otherwise we use the convention n = 2k in the rest of this chapter.
We present different equivalent definitions of the bent property. Prior to this we want
to assemble some basic results.

Definition 6.11. For a bent function f we define a Boolean function F such that

W (f̂)(u)

2
n
2

= (−1)F(u) = F̂(u).

We call F the dual of f .

That is to say we consider the dual as the signs of the Walsh-coefficients of f . Thus,
an obvious question is whether the dual is also a bent function.

Theorem 6.12. Let f be a Boolean function on Fn2 . Then f is bent if and only if the
dual F is bent.
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Proof. The Walsh-coefficients of F are ±2
n
2 , thus F is bent.

Therefore, we can conclude that bent functions always occur in pairs.

Definition 6.13. For each real-valued function f : Fn2 → R we associate the 2n × 2n

matrix [Mf ] of which the (u, v)th entry is f(u⊕ v), i.e. [Mf ] = (f(u⊕ v))u,v.

The next result is given by McFarland [25].

Theorem 6.14. Let the Sylvester-Hadamard matrix Hn be defined as in definition 3.6,
and ai, 0 ≤ i ≤ 2n − 1, as in definition 2.1. If f : Fn2 → R, then

Hn[Mf ]H
−1
n = diag (W (f)(a0),W (f)(a1), . . . ,W (f)(a2n−1)) .

Proof. We recall that H−1
n = 2−nH t

n. The (u, v)-th entry in the matrix Hn[Mf ]H
−1
n is

2−n
∑

(s,t)∈Fn
2×Fn

2

Hn(u, s)f(s⊕ t)Hn(t, v) = 2−n
∑
w∈Fn

2

f(w)
∑
s∈Fn

2

Hn(u, s)Hn(s⊕ w, v)

= 2−n
∑
w∈Fn

2

f(w)Hn(w, v)
∑
s∈Fn

2

Hn(u, s)Hn(v, s)

=

{
W (f)(u) if u = v

0 otherwise,

since we use the relation between Sylvester-Hadamard matrices and the Walsh transform.

Furthermore, we establish some more equivalent characterizations of the bent property.

Theorem 6.15. Let f : Fn2 → F2 be a Boolean function and let ξ be the (1,−1)-sequence.
Then f is bent if and only if 〈ξ, l〉 = ±2

n
2 for any affine sequence of length 2n.

Proof. This equivalence is a restatement of definition 6.1.

Theorem 6.16. Let f be a Boolean function on Fn2 . Then f is bent if and only if the

matrix [Mf̂ ] =
(
f̂(u⊕ v)

)
u,v

is a Hadamard matrix.

Proof. First, we assume that f is bent. From theorem 6.14 we know that

Hn[Mf̂ ]H
−1
n = diag

(
W (f̂)(a0),W (f̂)(a1), . . . ,W (f̂)(a2n−1)

)
. (6.3)

By applying the transposition operation we get(
H−1
n

)
[Mf̂ ]

tH t
n = Hn[Mf̂ ]

tH−1
n = diag

(
W (f̂)(a0),W (f̂)(a1), . . . ,W (f̂)(a2n−1)

)
.

(6.4)
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Multiplying (6.3) and (6.4), we immediately get

Hn[Mf̂ ][Mf̂ ]
tH−1

n = 2nI2n ,

which leads to

[Mf̂ ][Mf̂ ]
t = 2nI2n ,

that is, the matrix [Mf̂ ] is Hadamard.
Conversely, we assume that [Mf̂ ] is Hadamard. Immediately, we can conclude that

[Mf̂ ]
2 is Hadamard. We multiply Hn and H−1

n which gives us Hn[Mf̂ ]H
−1
n and this is

still Hadamard. Therefore, it follows that f is bent.

If we regard the Boolean function f as the characteristic function of the set D =
f−1(1), then the matrices [Mf ] and [Mf̂ ] coincide with the incidence matrix [MD] and
its associate matrix [MD∗ ], respectively. This leads to the following characterization of
bentness.

Theorem 6.17. Let f be a Boolean function on Fn2 . Then f is bent if and only if f−1(1)
is a Hadamard difference set in Fn2 .

Proof. We use lemma 6.7 to conclude the statement. The (u, v)-th entries of the matrix
J − 2[MD] are{

−1 if u− v ∈ D
1 otherwise

=

{
−1 if u⊕ v ∈ f−1(1)

1 otherwise

=

{
−1 if f(u⊕ v) = 1

1 otherwise
= (−1)f(u⊕v) ,

where D = f−1(1) is a Hadamard matrix. By theorem 6.7, D is also a Hadamard
difference set. Finally, we use theorem 6.16 and so it follows that f is bent.
For the converse we reverse the arguments.

Theorem 6.18. Let f be a Boolean function on Fn2 . Then f is bent if and only if
f(x)⊕ 〈α, x〉 has 2n−1 ± 2

n
2
−1 zeros for all α ∈ Fn2 .

Proof. Let us denote with Zv the number of zeros of g(x) = f(x)⊕ 〈v, x〉. Then

W (f̂)(v) =
∑
x∈Fn

2

(−1)f(x)⊕〈v,x〉 = Zv − (2n − Zv) = 2Zv − 2n

or

Zv = 2n−1 + 2−1W (f̂)(v).

Since f is bent, we have W (f̂)(v) = ±2
n
2 . Therefore, it follows that Zv = 2n−1 ± 2

n
2
−1.

For the converse we reverse the arguments.
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For the next characterization of bentness we use the directional derivative.

Theorem 6.19. Let f be a Boolean function on Fn2 . Then f is bent if and only if the
directional derivative fv is balanced for all nonzero v in Fn2 .

Proof. We use theorem 6.16 with [Mf̂ ] =
(
f̂(u⊕ v)

)
u,v

and know that f is bent if and

only if [Mf̂ ] is Hadamard. It follows that [Mf̂ ] is Hadamard if and only if∑
w∈Fn

2

(−1)f(u⊕w)⊕f(w⊕v) = 0,

for any u 6= v. If w runs through Fn2 , w⊕ v runs through Fn2 as well. Thus, we can write
the above equation as∑

w∈Fn
2

(−1)f(u⊕v⊕w)⊕f(w) = 0, (6.5)

for any u 6= v. And that is that fu⊕v is balanced.
For the converse we reverse the arguments.

The result of this theorem is that the classes of perfect nonlinear functions [26] and
bent functions coincide.
Let us stop for a moment and gather the various characterizations of bent functions in
the following theorem.

Theorem 6.20. Let f : Fn2 → F2 be a Boolean function. The following statements are
equivalent:

(i) f is bent.

(ii) Let ξ be the (1,−1)-sequence of f . Then 〈ξ, l〉 = ±2
n
2 for any affine sequence of

length 2n.

(iii) The matrix [Mf̂ ] =
(
f̂(u⊕ v)

)
u,v

is a Hadamard matrix.

(iv) f−1(1) is a Hadamard difference set in Fn2 .

(v) The dual F is bent.

(vi) The directional derivative fv(x) = f(x⊕ v)⊕ f(x) is balanced for all nonzero v in
Fn2 .

(vii) f(x)⊕ 〈α, x〉 assumes the value one 2n−1 ± 2
n
2
−1 times for any α ∈ Fn2 .
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There is yet another important characterization of bent functions concerning the non-
linearity of Boolean functions. This will, however, be discussed in chapter 7, where we
show that the function f is bent if and only if f attains the upper bound of nonlinearity.

We use corollary 3.20 and f̂ instead of f to obtain information about the degree of a
bent function. By corollary 3.20, we have∑

u≤v

f̂(u) = 2−wt(v)
∑
u≤v

W (f̂)(u).

For a Boolean function we have f̂(u) = (−1)f(u) = 1 − 2f(u), where we interpret the
functions as real functions. Furthermore, if f is bent, by using the definition 6.11 of the
dual F we have

W (f̂)(u) = 2
n
2 F̂ = 2

n
2 (1− 2F(u)) .

We obtain∑
u≤v

f̂(u) = 2−wt(v)
∑
u≤v

W (f̂)(u)⇔
∑
u≤v

(1− 2f(u)) = 2−wt(v)
∑
u≤v

2
n
2 (1− 2F(u))

⇔ 2wt(v) − 2
∑
u≤v

f(u) = 2−wt(v)
∑
u≤v

2
n
2 − 2−wt(v)+1n

2

∑
u≤v

F(u)

⇔
∑
u≤v

f(u) = 2wt(v)−1 − 2
n
2
−1 + 2−wt(v)+n

2

∑
u≤v

F(u).

This proves the next lemma.

Lemma 6.21. If f is a bent function on Fn2 , then regarding f as a real-valued function
we have∑

u≤v

f(u) = 2wt(v)−1 − 2
n
2
−1 + 2−wt(v)+n

2

∑
u≤v

F(u). (6.6)

Now we are able to phrase and prove the theorem on the degree of a bent function.

Theorem 6.22. For n = 2, the degree of a bent function on F2
2 is 2. For n > 2, the

degree of a bent function is at most n
2
.

Proof. The first part is obvious. For the second part, let f be a bent function and n > 2.
As we know, every Boolean function is given by a unique polynomial, so we have

f(x) =
∑
v∈Fn

2

g(v)xv1
1 · · ·xvnn ,

where the coefficients are given by

g(v) =
∑
u≤v

f(u).

The monomial xv1
1 · · ·xvnn is present in the polynomial f(x) if and only if g(v) is odd.

However, if wt(v) > n
2

and n > 2, then the right side of equation (6.6) is even. Thus,
g(v) is zero in F2 and f(x) does not contain the monomial xv1

1 · · ·xvnn . Therefore, f has
at most degree n

2
.
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Corollary 6.23. If f is bent of degree n
2
, then its dual F is also bent of degree n

2
.

Xia et al [45] have observed that the homogeneity influences the degree of bent func-
tions. They proved that homogeneous bent functions of degree k in 2k variables, for
k > 3, do not exist. The proof is based on the use of difference sets.
This approach was generalized by Meng et al. [27]. They showed that for any nonneg-
ative integer m, there exists a positive integer N such that for k ≥ N there exist no
2k-variable homogeneous bent function having degree k − m or more, where N is the
least integer such that 2N−1 >

(
N+1

0

)
+
(
N+1

1

)
+ · · ·+

(
N+1
m+1

)
.

The problem of constructing homogeneous bent functions of degree four and higher is
still a open problem. In this context we present the following conjecture given by Meng
et al [27].

Conjecture. For any integer k > 1, there exists a positive integer N such that when
m > N , there exist homogeneous bent functions of degree k in 2m variables.

6.3. Constructions of Bent Functions

For a better understanding of bent functions we want to construct such functions. We
differentiate between primary constructions and secondary constructions. Primary con-
structions include bent functions that are not used as building blocks in previous con-
structions and secondary constructions lead to recursive constructions. Thus, primary
constructions lead potentially to wider classes of functions than secondary constructions.

6.3.1. Primary Constructions

Maiorana and McFarland’s Construction

The following definition were introduced by Maiorana [22].

Definition 6.24. Let π : Fk2 −→ Fk2 be a permutation and g : Fk2 −→ F2 an arbitrary
Boolean function. Then f : Fk2 × Fk2 −→ F2 with

f(x, y) = 〈π(x), y〉 ⊕ g(x)

is called a Maiorana-McFarland function.

Remark. Dillon [11] points out that Maiorana and McFarland independently came
up with the same construction. Therefore, we call it the Maiorana and McFarland
construction or MM -functions.

The following theorem shows that all MM -functions are bent.

Theorem 6.25. The MM-functions as defined in definition 6.24 are bent.
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Proof. For any u, v ∈ Fk2, we have

W (f̂)(u, v) =
∑
x,y∈Fk

2

(−1)〈π(x),y〉⊕g(x)⊕〈u,x〉⊕〈v,y〉

=
∑
x,y∈Fk

2

(−1)g(x)⊕〈u,x〉⊕〈π(x),y〉⊕〈v,y〉

=
∑
x∈Fk

2

(−1)g(x)⊕〈u,x〉 ·
∑
y∈Fk

2

(−1)〈(π(x)⊕v),y〉

︸ ︷︷ ︸
=

2m, if π(x) = v

0, otherwise

= ±2m,

where the last equality follows from (6.9) and x = π−1(v). Thus, f is bent.

The above given construction was generalized by Carlet [2] in the following way.

Proposition 6.26. Let n = r + s (r ≤ s) be even. Further, let Φ be any mapping
from Fs2 to Fr2, such that, for every a ∈ Fr2, the set Φ−1(a) is an (n − 2r)-dimensional
affine subspace of Fs2. Let g be any Boolean function on Fs2 whose restriction to Φ−1(a)
(viewed as a Boolean function on Fn−2r

2 via an isomorphism between Φ−1(a) and this
vector space) is bent for every a ∈ Fr2, if n > 2r (no restriction is imposed if n = 2r).
Then the function fΦ,g(x, y) = 〈x,Φ(y)〉 ⊕ g(y) is bent on Fn2 .

Proof. [2] We start with the fact that every function x 7→ fΦ,g(x, y) ⊕ 〈a, x〉 ⊕ 〈b, y〉 is
affine and thus constant or balanced. This contributes for a nonzero value in the sum∑

x∈Fr
2, y∈Fs

2
(−1)fΦ,g(x,y)⊕〈a,x〉⊕〈b,y〉 only if Φ(y) = a. By rewriting the equality, we obtain

W (f̂Φ,g)(a, b) = 2r
∑

y∈Φ−1(a)

(−1)g(y)⊕〈b,y〉.

According to this, the function fΦ,g is bent if and only if r ≤ n
2

and
∑

y∈Φ−1(a)(−1)g(y)⊕〈b,y〉 =

±2
n
2
−r for every a ∈ Fr2 and b ∈ Fs2.

Other known primary constructions of bent functions are the Partial Spread class
given by Dillon [12] and the class N introduced by Dobbertin.

Application of the Maiorana-McFarland Construction

Next we use the Maiorana-McFarland construction to construct correlation immune-
and PC(k) functions. Therefore, we start to construct correlation immune functions of
order at least k applying a non-recursive method given by Camion et al. [1].
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Theorem 6.27. Given m and n with 1 ≤ m < n and define x = (x1, . . . xn) and
r = n −m, u = (x1, . . . , xm) and v = (xm+1, . . . , xn). Further, let g(u) be an arbitrary
Boolean function in m variables and let Φ(u) be any function Φ: Fm2 → Fr2 with

w = min{wt(Φ(u))|u ∈ Fm2 } ≥ 1. (6.7)

We define a Boolean function f on Fn2 by

f(x) = f(u, v) = 〈v,Φ(u)〉 ⊕ g(u).

Then f(x) is balanced and correlation immune of order k with k ≥ w − 1.

Proof. We have∑
x∈Fn

2

(−1)f(x) =
∑
u∈Fm

2

(−1)g(u)
∑
v∈Fr

2

(−1)〈v,Φ(u)〉 = 0,

since the sums over v are always 0 because by equation (6.7) Φ(u) 6= 0. Thus, f(x) is
balanced.

For any choice of b ∈ Fm2 , a ∈ Fr2 and for any k ≤ w − 1 with 1 ≤ wt(b, a) ≤ k, we
have

W (f)(b, a) =
∑

u∈Fm
2 , v∈Fr

2

(−1)f(u,v)⊕〈(b,a),(u,v)〉

=
∑

u∈Fm
2 , v∈Fr

2

(−1)〈Φ(u),v〉⊕g(u)⊕〈b,u〉⊕〈a,v〉

=
∑
u∈Fm

2

(−1)〈b,u〉⊕g(u)
∑
v∈Fr

2

(−1)〈(Φ(u)⊕a),v〉.

We get Φ(u)⊕ a 6= 0 by the fact that wt(a) ≤ k and wt(Φ(u)) ≥ w ≥ k + 1. Thus, the
sums over v are equal 0. Therefore, it follows that W (f)(b, a) = 0. By lemma 4.3 f is
correlation immune of order k.

Remark. Carlet discusses in [6] that one virtue of the MM -functions is their possibility
to retain control of some properties, for example the nonlinearity and the propagation
characteristics.

Moreover, we use the Maiorana-McFarland construction to construct functions satis-
fying the propagation criterion. We follow Carlet’s approach [5] and confine the obser-
vation on functions which satisfy PC(k) of order m for k > 1,m ≥ 1.

Theorem 6.28. We define a MM-function f(x, y) = 〈Φ(x), y〉 ⊕ g(x) in n = s + t
variables such that

(i) for each j, 1 ≤ j ≤ k, the sum of any j of the coordinate functions Φi(x) is a
balanced function;
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(ii) for every nonzero a ∈ Fs2 with wt(a) ≤ k, and for any x in Fs2, we have Φ(x⊕a) 6=
Φ(x).

Then f(x, y) satisfies PC(k).

Proof. For any a ∈ Fs2 and b ∈ Ft2, we have

f(x, y)⊕ f(x⊕ a, y ⊕ b) = 〈(Φ(x)⊕ Φ(x⊕ a)), y〉 ⊕ 〈Φ(x⊕ a), b〉 ⊕ g(x)⊕ g(x⊕ a)
(6.8)

If a = 0 and 1 ≤ wt(b) ≤ k, then equation (6.8) becomes 〈Φ(x), b〉 which is balanced
by equation (i). If 1 ≤ wt(a) ≤ k, then for every fixed x condition (ii) implies that the
function of y given by (6.8) is a non-constant affine function and hence the function is
balanced. Furthermore, for every a, b with 1 ≤ wt(a) + wt(b) ≤ k, it follows that (6.8)
is balanced. Therefore, it follows by using lemma 5.18 that f(x, y) satisfies PC(k).

Now we use the term of resiliency and obtain the following

Theorem 6.29. We define a MM-function f(x, y) = 〈Φ(x), y〉 ⊕ g(x) in n = s + t
variables such that

(i) for each j, 1 ≤ j ≤ k, the sum of any j of the coordinate functions Φi(x) is a
k-resilient function;

(ii) for every nonzero a ∈ Fs2 with wt(a) ≤ k, and for any x in Fs2, we have that at
least m+ 1 coordinates of the vectors Φ(x⊕ a) and Φ(x) are different.

Then f(x, y) satisfies PC(k) of order m.

Proof. Any restriction of a MM - function obtained by fixing some of the input bits in
x and y is still a MM -function. So any restriction of the above given MM -function has
the form f ′(x′, y′) = 〈Φ′(x′), y′〉 ⊕ g′(x′) by fixing at most m of the input bits in x and
y. Furthermore, the sum of any at least 1 and at most k of the Φ′i(x

′) is equal to the
sum of any at least 1 and at most k of the Φi(x).
Therefore, by condition (i), theorem 6.28 (i) is satisfied by f ′(x′, y′). By condition
(ii), it follows that for every nonzero a′ with wt(a′) ≤ k and for any x′ ∈ Fs2 we have
Φ′(x′ ⊕ a′) 6= Φ′(x′). Thus, we have that condition (ii) of theorem 6.28 is also satisfied
by f ′(x′, y′) and it follows that f(x, y) satisfies PC(k) of order m.

6.3.2. Secondary Constructions

In the remaining part, we focus on secondary constructions. First, we start to construct
bent functions on Fn+m

2 based on concatenation.

Theorem 6.30. Let f and g be Boolean functions on Fm2 and Fn2 , respectively. Then
the Boolean function h : Fm+n

2 → F2 is defined by h(x, y) = f(x) ⊕ g(y) is bent if and
only if f and g are bent.

59



Proof. Let z ∈ Fm+n
2 , z = (x, y), where x ∈ Fm2 and y ∈ Fn2 . Then we have

W (ĥ)(z) =
∑

t∈Fm+n
2

(−1)〈z,t〉⊕h(t)

=
∑
r∈Fm

2

∑
s∈Fn

2

(−1)〈x,r〉⊕〈y,s〉⊕f(r)⊕g(s)

= W (f̂)(x)W (ĝ)(y)

If f and g are bent, then we have W (f̂)(x) = ±2
m
2 and W (ĝ)(y) = ±2

n
2 . Thus, we have

W (ĥ)(z) = ±2
m+n

2 and so h is bent.
Conversely, we assume that h is bent. We have to prove that f and g are bent. For
instance, we suppose that f is not bent. Therefore, it follows that there exists u ∈ Fm2
such that |W (f̂)(u)| > 2

m
2 . Since h is bent and 2

m+n
2 = |W (f̂)(u)||W (ĝ)(v)|, thus for any

v ∈ Fn2 we have |W (ĝ)(v)| < 2
n
2 . Using Parseval’s equation (3.6), we get a contradiction

and so f has to be bent.

As Dillon [11] pointed out, functions of this type constructed within the previous the-
orem are rather uninteresting because they may be “decomposed” into simpler functions
on lower dimensional vector spaces.

Definition 6.31. A Boolean function f : Fn2 → F2 is decomposable if it is linearly equiva-
lent to a sum of functions in disjoint sets of variables. That is, there exists a nonsingular
n × n matrix T , n = m + k, 1 ≤ m < n, and two functions g : Fm2 → F2, h : Fk2 → F2

such that

f(xT ) = g(x1, . . . , xm)⊕ h(xm+1, . . . , xn).

Lemma 6.32. For n ≥ 6, every bent function of degree k = n
2

on Fn2 is indecomposable.

Proof. [36] If the bent function f of degree k is linearly equivalent to the sum of two
functions g and h in disjoint variables, then both g and h must be bent by theorem 6.30.
Their degrees are less than k, which means that their sum cannot have degree k. This
is a contradiction and the bent function is indecomposable.

It is easy to see that the above lemma is not true for n = 4. For example we take the
bent function h(x) = x1x2 ⊕ x3x4. Obviously, we can write h(x) = f(x1, x2)⊕ g(x3, x4)
and therefore the function is decomposable.

Corollary 6.33. The function

f(x) = x1x2 ⊕ x3x4 ⊕ · · · ⊕ x2k−1x2k, k ≥ 1,

is bent.
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Proof. The proof follows by induction on k. The base step is trivial, as we have seen in
example 11 the function f(x) = x1x2 is bent because the Walsh-coefficients of f̂ equals
±2. For the inductive step we have

g(x) = x1x2 ⊕ x3x4 ⊕ · · · ⊕ x2k−1x2k ⊕ x2k+1x2k+2

= f(x1, . . . , x2k)⊕ x2k+1x2k+2 = f(x1, . . . , x2k)⊕ h(x2k+1, x2k+2).

By our hypothesis, we have that f(x) is bent and obviously h(x2k+1, x2k+2) is bent due
to the base step. By theorem 6.30, it follows that g(x) is bent.

An interesting question is whether the class of bent functions is stable under addition
of affine functions. This question is to be answered in the affirmative as we shall prove
within the next theorem.

Theorem 6.34. If f is bent, then f ⊕ α is bent for any affine function α.

Proof. It suffices to consider the linear case αa(x) = 〈a, x〉, since adding 1 to a function
will complement the truth table. Then, we note g(x) = f(x)⊕ αa(x) and obtain

W (ĝ)(u) =
∑
x∈Fn

2

(−1)g(x)⊕〈u,x〉

=
∑
x∈Fn

2

(−1)f(x)⊕〈x,(u⊕a)〉

= W (f̂)(u⊕ a).

Thus, if f is bent, then g is bent for any a ∈ Fn2 .

Now a valid question is whether by applying an affine transformation on the variables
of a bent function also produce bent functions. To answer this question, let A be an
n × n invertible matrix over F2 and b a vector in Fn2 . We write g(x) = f(Ax ⊕ b) and
obtain

W (ĝ)(u) =
∑
x∈Fn

2

(−1)g(x)⊕〈u,x〉

=
∑
x∈Fn

2

(−1)f(Ax⊕b)⊕〈u,x〉.

By setting x = A−1w ⊕ A−1b, we get

W (ĝ)(u) =
∑
x∈Fn

2

(−1)f(w)⊕〈uA−1,w〉⊕〈u,A−1b〉

= (−1)〈u,A
−1b〉 ·W (f̂)(uA−1)

= ±W (f̂)(uA−1). (6.9)

Thus, if f is bent, then g is also bent.
For this reason we can answer the above question positive if the transformation is non-
singular. Finally, we have proven the following theorem.
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Theorem 6.35. Let A be an n× n invertible matrix over F2 and b a vector in Fn2 . If f
is bent, then g(x) = f(Ax⊕ b) is also bent.

Remark. The nonsingularity of the transformation is a requirement for good crypto-
graphic functions.
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7. Properties of Nonlinearity

Nonlinearity is an important cryptographic criterion. It measures the ability of a cryp-
tographic system using the functions to resist against being expressed as a linear set of
equations.

The purpose of this chapter is to examine properties of nonlinearity. In detail, we
present the basics about nonlinearity and introduce some results concerning the upper
and lower bound of nonlinearity. Furthermore, we observe ways to construct highly
(balanced) nonlinear functions. A vast body of work has focused on nonlinearity. Thus,
this section is mainly based on results from Seberry, Zhang and Zheng [38].

7.1. Bounds of Nonlinearity

In this section, we observe the upper bound of nonlinearity which is only attainable by
bent functions. Moreover, we present some results about the lower bound of nonlinearity
of a function obtained by concatenating sequences of functions.

First, we phrase a lemma that is very useful in calculating nonlinearity of a function.

Lemma 7.1. Let f and g be functions on Fn2 whose (1,−1)-sequences are ξf and ξg.
Then the distance between f and g can be calculated by d(f, g) = 2n−1 − 1

2
〈ξf , ξg〉.

Proof.

〈ξf , ξg〉 =
∑

f(x)=g(x)

1−
∑

f(x)6=g(x)

1

= 2n − 2
∑

f(x)6=g(x)

= 2n − 2d(f, g).

By rearranging the terms, the statement follows immediately.

The valid question is whether we find an upper bound of nonlinearity.

Theorem 7.2. [38] For any function f on Fn2 , the nonlinearity Nf of f satisfies Nf ≤
2n−1 − 2

n
2
−1.

To prove the theorem we need the following lemma. The lemma presents how closely
Sylvester-Hadamard matrices (3.6) are related to linear functions (2.3).
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Lemma 7.3. [38] If the Sylvester-Hadamard matrix Hn is given by

Hn =


l0
l1
...

l2n−1

 ,
where li is a row of Hn, i = 0, . . . , 2n − 1, then li is the (1,−1)-sequence of hi = 〈ai, x〉,
a linear function, where ai is defined before in (2.1) and x = (x1, . . . , xn). Conversely,
the (1,−1)-sequence of any linear function on Fn2 is a row of Hn.

Proof. The lemma follows by induction on n. Let n = 1, then we have the following

Sylvester-Hadamard matrix H1 =

[
1 1
1 −1

]
. The first row of H1, l0 = (1, 1), is the

sequence of h0 = 〈a0, x〉, while the second row of H1, l1 = (1,−1), is the sequence of
h1 = 〈a1, x〉, where x = x1, a0 = 0 and a1 = 1. Now, we suppose that the first half of
the lemma is true for n = 1, 2, . . . , k− 1. Since Hk = H1⊗Hk−1, each row of Hk can be
expressed as δ⊗ l where δ = (1, 1) or (1,−1), and l is a row of Hk−1. By the assumption
that l is the (1,−1)-sequence of a linear function hk−1(x) = 〈a, x〉 for some a ∈ Fk−1

2 and
x = (x1, . . . , xk−1), it follows that δ⊗ l is the sequence of a linear function on Fk2 defined
by hk(y) = 〈b, y〉, where y = (y1, . . . , yk), b = (0, a) if δ = (1, 1) and b = (1, a) otherwise.
Thus, the first half is also true for n = k.
The second half follows from the discussion above as well as the fact that Hn has 2n

rows, and there are exactly 2n linear functions on Fn2 .

We note that the rows of Hn comprise the (1,−1)-sequences of all linear functions.
Consequently, the rows of ±Hn comprise the sequences of all affine functions.

Proof of theorem 7.2. [38] We recall that Hn is a 2n×2n matrix. Likewise to lemma 7.3,
we denote by li the i-th row of Hn with i = 0, 1, . . . , 2n − 1. Furthermore, for each row
li, we define li+2n = −li. As a consequence of lemma 7.3, we get that all affine sequences
are among the rows ±Hn, that is, l0, . . . , l2n+1−1. Let f be a Boolean function on Fn2 of
which the sequence is ξf = (a1, . . . , an), and let αi be an affine function whose sequence
is li. Thus, from lemma 7.1 we infer that

〈ξf , li〉2 = 2n + 2
∑
j<k

ajakhijhik.

Summing up for i = 1, . . . , 2n, leads to a variant of Parseval’s equation [21, p. 416] as
follows

2n∑
i=1

〈ξf , li〉2 = 22n + 2
2n∑
i=1

∑
j<k

ajakhijhik

= 22n + 2
∑
j<k

ajak

2n∑
i=1

hijhik = 22n. (7.1)
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Consequently, there exists an integer 1 ≤ i ≤ 2n such that 〈ξf , li〉2 = 〈ξf , li+2n〉2 ≥ 2n.
With the fact that 〈ξf , li〉 = −〈ξf , li+2n〉, we have either 〈ξf , li〉 ≥ 2

n
2 or 〈ξf , li+2n〉 ≥ 2

n
2 .

Without loss of generality we assume that 〈ξf , li〉 ≥ 2
n
2 . Therefore, by lemma (7.1), we

get

d(f, αi) = 2n−1 − 1

2
〈ξf , li〉 ≤ 2n−1 − 2

n
2
−1. (7.2)

Remark. In this chapter, we use an alternative notation. That is |〈ξ, li〉| =
∣∣∣W (f̂)(ai)

∣∣∣
for i = 0, . . . 2n − 1 and li is the ith row of the Sylvester-Hadamard matrix Hn.

Due to the remark, we give an equivalent formulation of theorem 3.18.

Theorem 7.4. The nonlinearity of a Boolean function f on Fn2 can be expressed by

Nf = 2n−1 − 1

2
max{|〈ξ, li〉| : 0 ≤ i ≤ 2n − 1},

where ξ is the (1,−1)-sequence of f and l0, . . . .l2n−1 are the rows of Hn, namely, the
(1,−1)-sequences of linear functions on Fn2 .

It is known that for n is even, the bound in theorem 7.2 is attained by the bent
functions. This result will be shown in the next theorem. For odd n the right-hand
side of the inequality of theorem 7.2 is not an integer. Clearly, equality is impossible.
However, the important question how close Nf can get to the right-hand side if n is odd
is not completely answered to this day.

Theorem 7.5. A function f on Fn2 attains the upper bound of nonlinearities, 2n−1−2
n
2
−1,

if and only if f is bent.

Proof. From theorem 6.20, we have that since f is bent, it follows that

〈ξf , li〉 = ±2
n
2 , (7.3)

where li is the corresponding sequence of the affine function αi. Using equation (7.3)
and the relation d(f, g) = 2n−1 − 1

2
〈ξf , ξg〉 from lemma 7.1, we deduce

d(f, αi) = 2n−1 ± 2
n
2
−1,

which implies Nf = 2n−1 − 2
n
2
−1.

Conversely, we suppose that f attains the upper bound of nonlinearity. Then 〈ξf , li〉2 =
2n for i = 1, 2, . . . , 2n+1. Now we suppose that this is not the case. Thus, from Parseval’s
equation, there would exist i1 and i2, 1 ≤ i1, i2 ≤ 2n, such that 〈ξf , li1〉2 > 2n and
〈ξf , li2〉2 < 2n. This implies that either 〈ξf , li1〉 > 2

n
2 or 〈ξf , li1+2n〉>2

n
2 . Moreover,

we suppose without loss of generality that 〈ξf , li1〉2 > 2
n
2 . Furthermore, we infer that

d(f, li1) < 2n−1 − 2
n
2
−1 and as a consequence we have Nf = 2n−1 − 2

n
2
−1. This is a

contradiction to the assumption that f attains the maximum nonlinearity. Furthermore,
we must have 〈ξf , li〉 = ±2

n
2 , i = 1, 2, . . . , 2n+1, which implies that f is bent, c.f. theorem

6.15.
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Corollary 7.6. Let f be a balanced function on Fn2 (n ≥ 3). Then the nonlinearity Nf

of f is given by

Nf ≤

{
2n−1 − 2

n
2
−1 − 2 if n is even

bb2n−1 − 2
n
2
−1cc if n is odd,

where bbxcc denotes the maximum even integer less than or equal to x.

Proof. See [38].

So far, we observed that there is a upper bound of nonlinearity. Therefore, we turn
our attention to the question whether there is also a lower bound of nonlinearity. We
obtain the lower bound of nonlinearity by concatenating sequences of functions.

Lemma 7.7. Let f1 and f2 be functions on Fn2 , and let g be a function on Fn+1
2 defined

by

g(u, x1, . . . , xn) = [f1, f2]n+1 = (1⊕ u)f1(x1, . . . , xn) + uf2(x1, . . . , xn). (7.4)

Suppose that ξ1 and ξ2, the sequences of f1 and f2 respectively, satisfy 〈ξ1, l〉 ≤ P1 and
〈ξ2, l〉 ≤ P2 for any affine sequence l of length 2n, where P1 and P2 are positive integers.
Then the nonlinearity of g satisfies Ng ≥ 2n − 1

2
(P1 + P2).

Proof. Let ξ = (ξ1, ξ2) be the sequence of g. Further, let α be an arbitrary affine
function on Fn+1

2 and we denote the sequence of α with L. Then L have to take the form
of L = (l,±l), where l is an affine sequence of length 2n. Next, we note that 〈ξ, L〉 =
〈ξ1, l〉±〈ξ2, l〉 and thus |〈ξ, L〉| ≤ P1 +P2. By lemma 7.1, we have d(g, α) = 2n− 1

2
〈ξ, L〉.

From these discussions we have d(g, α) ≥ 2n − 1
2
(P1 + P2). Since α is arbitrary, we have

Ng ≥ 2n − 1
2
(P1 + P2).

Bent functions do not exist for odd dimension. Thus, an interesting question is whether
there are highly nonlinear functions on F2k+1

2 . The following corollary is a special case
from the previous lemma. It shows that such functions can be obtained by concatenating
bent sequences.

Corollary 7.8. In the construction (7.4), if both f1 and f2 are bent functions on F2k
2 ,

then Ng ≥ 22k − 2k.

Proof. In the proof of lemma 7.7, let P1 = P2 = 2k. This proves the corollary.

We provide yet another result concerning the concatenation of four functions.

Lemma 7.9. [38] Let f0, f1, f2 and f3 be functions on Fn2 whose sequences are ξ0, ξ1, ξ2

and ξ3 respectively. Assume that 〈ξi, l〉 ≤ Pi for each 0 ≤ i ≤ 3 and for each affine
sequence l of length 2n, where each Pi is a positive integer. Let g be a function on F2n

2

defined by

g(y, x) =
3⊕
i=0

Dai(y)fi(x), (7.5)

66



where y = (y1, y2), x = (x1, . . . , xn) and ai as defined in definition (2.1). Then Ng ≥
2n+1 − 1

2
(P0 + P1 + P2 + P3). In particular, if n is even and f0, f1, f2 and f3 are bent

functions on Fn2 , then Ng ≥ 2n+1 − 2
n
2

+1.

Proof. Analogue to lemma 7.7.

Furthermore, we generalize the previous lemma in the following way. Let f0, f1, . . . , f2t−1

be functions on Fn2 . We denote with ξi the sequence of fi. Thus, we assume that
〈ξi, l〉 ≥ Pi for each 0 ≥ i ≥ 2t − 1 and for each sequence l of length 2n, where Pi is a
positive integer. Hence, we define a function g on Fn+t

2 by

g(y, x) =
2t−1⊕
i=0

Dai(y)fi(x), (7.6)

where y = (y1, . . . , yn), x = (x1, . . . , xn) and ai as defined in definition (2.1). Then

Ng ≥ 2n+t−1− 1
2

∑2t−1
i=0 Pi. And in particular, when n is even and fi, i = 0, 1, . . . , 2t− 1,

are all bent functions on Fn2 , then we have Ng ≥ 2n+t−1 − 2
n
2

+t−1.

We note that if we select proper starting functions in (7.4), (7.5) and (7.6), the re-
sulting functions can be balanced. For instance, in (7.4), if both functions f1 and f2 are
balanced, or the number of times that f1 takes the value one is equal to that f2 takes
the value zero, hence the resulting function g is balanced.

7.2. Highly Nonlinear Balanced Functions

Bent functions have maximum nonlinearity and satisfy the SAC. They are not bal-
anced and, hence, cannot be used directly in many cryptosystems, where balancedness
is needed. We note that a bent function on Fn2 contains 22k−1+2k−1 ones and 22k−1−2k−1

zeros, or vice versa. Meier and Staffelbach [26] observed that by changing 2k−1 posi-
tions in a bent function, we get a balanced function having a nonlinearity of at least
22k−1 − 2k. This nonlinearity is the same as that by concatenating four bent functions
of length 22k−2 (cf. lemma 7.9). First, we present a useful lemma.

Lemma 7.10. Let f1 be a function on Fn2 and f2 be a function on Fm2 . Then f1(x1, . . . , xn)⊕
f2(y1, . . . , ym) is a balanced function on Fn+m

2 if either f1 or f2 is balanced.

Proof. Let g(x1, . . . , xn, y1, . . . , ym) = f1(x1, . . . , xn) ⊕ f2(y1, . . . , ym). Without loss of
generality, we suppose that f1 is balanced. Then for any vector a ∈ Fm2 ,

g(x1, . . . , xn, a1, . . . , at) = f1(x1, . . . , xn)⊕ f2(a1, . . . , at)

is a balanced function on Fn2 . Thus, it follows immediately that g is a balanced function
on Fn+m

2 .

So far, we have constructed several (balanced) functions with several nonlinearity
bounds. Let us turn our attention to construct SAC functions with high nonlinearity.
Thus, we split our examination between odd and even dimensional vector spaces.
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On odd dimensional vector space

Let k ≥ 1 and we consider a bent function f and a non-constant affine function α. Both
functions are on F2k

2 and x = (x1, . . . , x2k). From theorem 6.34, we know that f ⊕ α is
also bent.
Without loss of generality, we may assume that f takes the value zero 22k−1 +2k−1 times
(otherwise we replace f by f ⊕ 1). By the same reasoning, we may assume that f ⊕ α
takes the value zero 22k−1 − 2k−1 times. Let g be a function on F2k+1

2 defined by

g(u, x1, . . . , x2k) = (u⊕ 1)f(x1, . . . , x2k)⊕ u (f(x1, . . . , x2k)⊕ α(x1, . . . , x2k))

= f(x1, . . . , x2k)⊕ uα(x1, . . . , x2k). (7.7)

Lemma 7.11. The function g defined by (7.7) is a balanced function on F2k+1
2 .

Proof. We note that g(0, x) = f(x) has 22k−1 + 2k−1 zeros and g(1, x) = f(x) ⊕ α(x)
has 22k−1 − 2k−1 zeros. Thus, the number of times g takes the value zero is (22k−1 +
2k−1) + (22k−1 − 2k−1) = 22k. Moreover, g has also 22k ones. Therefore, g is a balanced
function.

Lemma 7.12. The function g defined by (7.7) has nonlinearity Ng ≥ 22k − 2k.

Proof. Since g(u, x) = f(x)⊕ uα(x) = (u⊕ 1)f(x)⊕ u(f(x)⊕ α(x)) with f and f ⊕ α
are bent functions and x = (x1, . . . , x2k). Then using lemma 7.7 and corollary 7.8, we
deduce that Ng ≥ 22k − 2k.

Lemma 7.13. The function g defined by (7.7) satisfies the SAC.

Proof. Let e = (a0, . . . , a2k) be an arbitrary vector in F2k+1
2 with wt(e) = 1, a =

(a1, . . . , a2k), z = (u, x1, . . . , x2k) and x = (x1, . . . x2k). Then

g(z ⊕ e) = f(x⊕ a)⊕ (u⊕ a0)α(x⊕ a)

and

g(z)⊕ g(z ⊕ e) = f(x)⊕ f(x⊕ a)⊕ u(α(x)⊕ α(x⊕ a))⊕ a0α(x⊕ a),

which we show to be balanced, that is equivalent to fulfill the SAC. We consider the
following two cases:

(i) If a0 = 0 and hence wt(a) = 1. Then g(z)⊕ g(z⊕ e) = f(x)⊕ f(x⊕ a)⊕u(α(x)⊕
α(x⊕ a)). Since α is a non-constant affine function, so α(x)⊕α(x⊕ a) = c, where
c is a constant from F2. Thus, we have g(z) ⊕ g(z ⊕ e) = f(x) ⊕ f(x ⊕ a) ⊕ cu.
By (vi) of lemma 6.20, f(x) ⊕ f(x ⊕ a) is a balanced function on F2k

2 and hence
by lemma 7.10, g(z)⊕ g(z ⊕ e) is a balanced function on F2k+1

2 .

(ii) If a0 = 1 and hence wt(a) = 0, i.e. a = (0, . . . , 0), then g(z) ⊕ g(z ⊕ e) = α(x).
Since α is a non-constant affine function on F2k

2 , α(x) and g(z) ⊕ g(z ⊕ e) are
balanced.
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Therefore, the function g satisfies the SAC.

Summarizing the previous lemmas, we have

Theorem 7.14. For k ≥ 1, g defined by (7.7) is a balanced function on F2k+1
2 , having

Ng ≥ 22k − 2k and satisfying the SAC.

Example 12. [38] We consider the vector space F5
2. As we know, f(x) = x1x2 ⊕ x3x4

is a bent function on F4
2. Furthermore, we choose the non-constant affine function

α(x) = 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4. We note that f(x) takes the value zero 24−1 + 22−1 = 10
times and f(x)⊕α(x) takes the value zero 24−1− 22−1 = 6 times. According to (7.7) we
have g(u, x) = f(x)⊕uα(x) = x1x2⊕x3x4⊕u(1⊕x1⊕x2⊕x3⊕x4). By theorem 7.14, it
follows that g is balanced with Ng ≥ 24− 22 = 12 and satisfying the SAC. On the other
hand we have corollary 7.6. By this corollary the nonlinearity of balanced functions
is bounded from the above by bb24 − 22− 1

2 cc = bb13, 1818 . . . cc = 12. Therefore, the
nonlinearity of g attains the upper bound for balanced functions on F5

2.

On even dimensional vector space

Let k ≥ 2 and f be a bent function on F2k−2
2 . We consider three non-constant affine

functions α1, α2 and α3 on F2k−2
2 such that αi ⊕ αj is non-constant for any i 6= j.

Such affine functions exist for all k ≥ 2. Moreover, we note that x = (x1, . . . , x2k−2)
and f(x) ⊕ αj(x) is bent. Without loss of generality, we may assume that both f(x)
and f(x) ⊕ α1(x) take the value one 22k−3 + 2k−2 times while both f(x) ⊕ α2(x) and
f(x)⊕α3(x) take the value one 22k−3−2k−2 times. This assumption is reasonable because
f(x)⊕αj(x) takes the value one 22k−3 + 2k−2 times if and only if f(x)⊕αj(x)⊕ 1 takes
the value one 22k−3 − 2k−2 times. Additionally, αj(x) ⊕ 1 is also a non-constant affine
function. Therefore, we can choose either f(x) ⊕ αj(x) or f(x) ⊕ αj(x) ⊕ 1 and the
assumption is satisfied. Now, let g be a function on F2k

2 defined by

g(u, v, x1, . . . , x2k−2) =(u⊕ 1)(v ⊕ 1)f(x)⊕ (u⊕ 1)v(f(x)⊕ α1(x))

⊕ u(v ⊕ 1)(f(x)⊕ α2(x))⊕ uv(f(x)⊕ α3(x))

=f(x)⊕ vα1(x)⊕ uα2(x)⊕ uv(α1(x)⊕ α2(x)⊕ α3(x)).
(7.8)

Lemma 7.15. The function g defined by (7.8) is a balanced function on F2k
2 .

Proof. We note that g(0, 0, x) = f(x) and g(0, 1, x) = f(x) ⊕ α1(x) take the value zero
22k−3 + 2k−2 times. Furthermore, g(1, 0, x) = f(x)⊕α2(x) and g(1, 1, x) = f(x)⊕α3(x)
take the value zero 22k−3 − 2k−2 times. Thus, the function g takes the value zero 2k−2

times and hence g is a balanced function on F2k
2 .

Lemma 7.16. The function g defined by (7.8) has nonlinearity Ng ≥ 22k−1 − 2k.

Proof. Analogue to the proof of lemma 7.12.

Lemma 7.17. The function g defined by (7.8) satisfies the SAC.
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Proof. The proof is similar to the proof of lemma 7.13. Let e = (b, c, a1, . . . a2k−2) be an
arbitrary vector in F2k

2 with wt(e) = 1, a = (a1, . . . , a2k−2), z = (u, v, x1, . . . , x2k−2) and
x = (x1, . . . , x2k−2). Then

g(z ⊕ e) =f(x⊕ a)⊕ (v ⊕ c)α1(x⊕ a)⊕ (u⊕ b)α2(x⊕ a)

⊕ (v ⊕ c)(u⊕ b)(α1(x⊕ a)⊕ α2(x⊕ a)⊕ α3(x⊕ a)).

We consider the balancedness of g(z)⊕ g(z ⊕ e) in the following three cases.

(i) If b = 1, c = 0 and hence wt(a) = 0. Therefore, we have g(z) ⊕ g(z ⊕ e) =
α2(x)⊕ v(α1(x)⊕ α2(x)⊕ α3(x)).
If v = 0, then g(z) ⊕ g(z ⊕ e) = α2(x). And if v = 1, then g(z) ⊕ g(z ⊕ e) =
α1(x) ⊕ α3(x). Both functions α2(x) and α1(x) ⊕ α3(x) are non-constant affine
functions on F2k−2

2 and hence g(z)⊕ g(z ⊕ e) is a balanced function on F2k
2 .

(ii) If b = 0, c = 1 and hence wt(a) = 0. The proof of balancedness is similar to (i).

(iii) If b = 0, c = 0 and hence wt(a) = 1. Since αj is an affine function we have
that αj(x) ⊕ αj(x ⊕ a) = aj, where aj is a constant from F2. Therefore, we have
g(z)⊕g(z⊕e) = f(x)⊕f(x⊕a)⊕va1⊕ua2⊕uv(a1⊕a2⊕a3). By lemma 6.20(vi),
we have that f(x)⊕ f(x⊕ a) is a balanced function on F2k−2

2 and hence by lemma
7.10 we have that g(z)⊕ g(z ⊕ e) is a balanced function on F2k

2 .

This proves that g satisfies the SAC.

Summarizing the previous lemmas we have

Theorem 7.18. For k ≥ 2, the function g defined by (7.8) is a balanced function on
F2k

2 , having Ng ≥ 22k−1 − 2k and satisfying the SAC.

Example 13. [38] We consider the vector space F6
2. We choose the bent function f(x) =

x1x2 ⊕ x3x4. Moreover, we choose the affine functions α1(x) = x1, α2(x) = x2 ⊕ 1 and
α3(x) = x3⊕1. We obtain that f(x) and f(x)⊕α1(x) take the value one 24−1−22−1 = 6
times while both f(x) ⊕ α2(x) and f(x) ⊕ α3(x) take the value one 24−1 + 22−1 = 10
times. According to (7.8), we have g(u, v, x) = f(x) ⊕ vα1(x) ⊕ uα2(x) ⊕ uv(α1(x) ⊕
α2(x) ⊕ α3(x)). By theorem 7.18, it follows that g is balanced with Ng ≥ 25 − 23 = 24
and satisfying the SAC. We can compare Ng with the upper bound for the nonlinearities
of balanced functions on F6

2 which is 25− 22− 2 = 26.Therefore, the function g does not
attain the upper bound of nonlinearity.

7.3. Construction of Highly Nonlinear Balanced
Functions Satisfying High Degree Propagation
Criterion

7.3.1. Basic Construction

Preneel et al. [35] suggested that a Boolean function Fn2 which has a zero point in its
Walsh spectrum can be modified into a balanced function by adding a suitable linear
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function α on Fn2 . The problem is that α has to be found by an exhaustive search over
all the linear functions on Fn2 . Obviously, this method is infeasible when n is large.
Furthermore, this method is not applicable to the functions which do not have zero
points in its Walsh spectra. These functions include bent functions.
Seberry et al. [38] introduced a new method for systematically constructing highly
nonlinear balanced functions satisfying the propagation criterion. The starting point
of this construction are bent functions. We split our examination for odd and even
dimensional vector spaces. If n is odd, we construct balanced functions satisfying the
propagation criterion with respect to all nonzero vectors expect ω = (1, 0, . . . , 0). And if
n is even, we construct balanced functions that satisfying the propagation criterion with
respect to all but three nonzero vectors, that is ω1 = (1, 0, . . . , 0), ω2 = (0, 1, 0, . . . , 0)
and ω3 = ω1 ⊕ ω2 = (1, 1, 0, . . . , 0).

On odd dimensional vector space

Let n = 2k and k ≥ 1. We consider a bent function f on F2k
2 and let g be a function on

F2k+1
2 defined by

g(x1, . . . , x2k+1) = (x1 ⊕ 1)f(x2, . . . , x2k+1)⊕ x1(1⊕ f(x2, . . . , x2k+1))

= x1 ⊕ f(x2, . . . , x2k+1). (7.9)

The following lemma presents the result that the defined function g satisfies the prop-
agation criterion

Lemma 7.19. The function g defined in (7.9) satisfies the propagation criterion with
respect to all nonzero vectors ω ∈ F2k+1

2 with ω 6= (1, 0, . . . , 0).

Proof. Let ω = (a1, a2, . . . , a2k+1) 6= (1, 0, . . . , 0) and let x = (x1, . . . , x2k+1). Then we
have g(x)⊕ g(x⊕ ω) = a1 ⊕ f(x2, . . . , x2k+1)⊕ f(x2 ⊕ a2, . . . , x2k+1 ⊕ a2k+1). By (vi) of
theorem 6.20, we have that since f is bent the directional derivative f(x2, . . . , x2k+1)⊕
f(x2⊕a2, . . . , x2k+1⊕a2k+1) is balanced for all (a2, . . . , a2k+1) 6= (0, . . . , 0). Thus, g(x)⊕
g(x⊕ ω) is balanced for all ω = (a1, a2, . . . , a2k+1) 6= (1, 0 . . . , 0).

Corollary 7.20. The function g defined by (7.9) is balanced and satisfies the propagation
criterion with respect to all nonzero vectors ω ∈ F2k+1

2 with ω = (1, 0, . . . , 0). The
nonlinearity of g satisfies Ng ≥ 22k − 2k.

Proof. The function g is balanced by lemma 7.10. That g satisfies the propagation
criterion with respect to all nonzero vectors ω ∈ F2k+1

2 with ω 6= (1, 0, . . . , 0) follows
from the previous lemma 7.19. And the nonlinearity follows from corollary 7.8.
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On even dimensional vector space

Let n = 2k and k ≥ 2 and f be a bent function on F2k−2
2 . Let g be a function on F2k

2

defined by

g(x1, x2, . . . , x2k) =(x1 ⊕ 1)(x2 ⊕ 1)f(x3, . . . x2k)⊕ (x1 ⊕ 1)x2(1⊕ f(x3, . . . , x2k))⊕
x1(x2 ⊕ 1)(1⊕ f(x3, . . . , x2k))⊕ x1x2f(x3, . . . , x2k)

=x1 ⊕ x2f(x3, . . . , x2k). (7.10)

The following lemma shows that the defined function g satisfies the propagation cri-
terion

Lemma 7.21. The function g defined by (7.10) satisfies the propagation criterion with
respect to all but three nonzero vectors in F2k

2 . The three vectors are ω1 = (1, 0, . . . , 0),
ω2 = (0, 1, 0, . . . 0) and ω3 = ω1 ⊕ ω2 = (1, 1, 0, . . . , 0).

Proof. Let ω = (a1, . . . , a2k) be a nonzero vector in F2k
2 differing from ω1, ω2 and ω3.

Furthermore, let x = (x1, . . . , x2k) and we have g(x)⊕g(x⊕ω) = a1⊕a2⊕f(x3, . . . x2k)⊕
f(x3⊕a3, . . . x2k⊕a2k). By (vi) of theorem 6.20, we have that since f is bent on F2k−2

2 and
(a3, . . . , a2k) 6= (0, . . . , 0), the directional derivative f(x3, . . . x2k)⊕f(x3⊕a3, . . . x2k⊕a2k)
is balanced. Thus, g(x) ⊕ g(x ⊕ ω) is balanced for any nonzero vector in F2k

2 differing
from ω1, ω2 and ω3.

Corollary 7.22. The function g defined by (7.10) is balanced and satisfies the propaga-
tion criterion to all nonzero vectors ω ∈ F2k

2 with ω 6= (c1, c2, 0, . . . , 0) with c1, c2 ∈ F2.
The nonlinearity of g satisfies Ng ≥ 2k−1 − 2k.

Proof. Balancedness follows from the fact that since x1⊕x2 is balanced on F2
2, then g is

balanced on F2k
2 . g satisfies the propagation criterion with respect to all nonzero vectors

ω ∈ F2k
2 differing from ω1, ω2 and ω3, that follows from the previous lemma 7.21. The

statement about nonlinearity follows from corollary 7.8.

The functions constructed in (7.9) and (7.10) satisfy the propagation criterion with
respect to all but one or three nonzero vectors. Thus, they only fulfill the propaga-
tion criterion of degree zero. Therefore, these functions are not interesting in practical
applications. Moreover, we introduce a method given by Seberry et al. [38] that trans-
forms the vectors where the propagation criterion is not satisfied into vectors with high
Hamming-weight. This provides the possibility to obtain functions satisfying high degree
propagation criterion.

7.3.2. Improved Construction

We recall that balancedness, nonlinearity and the number of vectors where the propa-
gation criterion is satisfied are all invariant under an affine transformation of the coor-
dinates.
Seberry et al. [38] used such a transformation for the vectors where the propagation cri-
terion is not satisfied to obtain vectors having a high Hamming-weight. In this way, we
obtain highly nonlinear balanced functions satisfying high degree propagation criterion.
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On odd dimensional vector space

Theorem 7.23. Let k ≥ 1 and for any nonzero vector ω∗ ∈ F2k+1
2 , there exist balanced

functions on F2k+1
2 satisfying the propagation criterion with respect to all nonzero vectors

ω ∈ F2k+1
2 with ω 6= ω∗. The nonlinearity of the functions are at least 22k − 2k.

Proof. Let f be a bent function and let g be the function constructed by (7.9). From
linear algebra, we know that there exists a unique nonsingular matrix A of order 2k+ 1
with entries from F2 such that αj · A = βj, j = 1, . . . , 2k + 1, where we have the bases
B1 and B2 of the vector space F2k+1

2 with B1 = {αj|j = 1, . . . , 2k + 1} and B2 =
{βj|j = 1, . . . , 2k + 1}. In particular, this is true when α = ω∗ and β1 = (1, 0, . . . , 0).
Furthermore, let x = (x1, . . . , x2k+1) and we denote with g∗ the function obtained from
g by a affine transformation on the input of g, that is

g∗(x) = g(Ax).

Since the matrix A is nonsingular, the function g∗ is balanced and has the same non-
linearity as g.This follows from the invariance of nonlinearity and balancedness of an
affine transformation of the input coordinates. By corollary 7.20 the nonlinearities of
the functions are at least 22k − 2k. In the next step we show that g∗ satisfies the propa-
gation criterion with respect to all nonzero vectors except ω∗.
Now let ω be a nonzero vector in F2k+1

2 with ω 6= ω∗. We consider the following function
g∗(x)⊕ g∗(x⊕ω) = g(Ax)⊕ g(Ax⊕Aω). Since A is nonsingular Ax runs through F2k+1

2

while x runs through F2k+1
2 . Furthermore, since ω 6= ω∗ we have Aω 6= (1, 0, . . . , 0).

Using lemma 7.19, we obtain that g(Ax)⊕ g(Ax⊕Aω) takes the value zero and one an
equal number of times. Therefore, it follows that g∗(x)⊕ g∗(x⊕ ω) is balanced. Conse-
quently, we have that g∗ satisfies the propagation criterion with respect to all nonzero
vectors in F2k+1

2 but ω∗.

By letting ω∗ = (1, . . . , 1), we obtain highly nonlinear balanced functions on F2k+1
2

satisfying the propagation criterion of degree 2k.

Corollary 7.24. Let k ≥ 1 and f be a bent function on F2k
2 and let g∗(x1, . . . , x2k+1) =

x1 ⊕ f(x1 ⊕ x2, x1 ⊕ x3, . . . , x1 ⊕ x2k+1). Then g∗ is a balanced function on F2k+1
2 and

satisfies the propagation criterion of degree 2k. The nonlinearity of g∗ satisfies Ng ≥
22k − 2k.

Proof. We denote with ej the vector in F2k+1
2 whose jth coordinate is one and all the

other coordinates are zero, j = 1, . . . , 2k + 1. Furthermore, we use the conditions of
theorem 7.23. Let α1 = ω0 = (1, . . . , 1), αj = ej for j = 2, . . . , 2k + 1, and βj = ej for
j = 1, . . . , 2k+ 1. Then there is a unique nonsingular matrix A of order 2k+ 1 such that
αj · A = βj, j = 1, . . . , 2k + 1, where A has the following form

A =


ω0

e2
...

e2k+1

 .
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We have x = (x1, . . . , x2k+1). Furthermore, we obtain g∗(x) = g(Ax) = g(x1, x1 ⊕
x2, . . . , x1⊕x2k+1) = x1⊕f(x1⊕x2, . . . , x1⊕x2k+1), where g(x) = x1⊕f(x2, . . . , x2k+1),
cf. (7.9). From theorem 7.23, we know that g∗ satisfies the propagation criterion with
respect to all nonzero vectors in F2k+1

2 except the all-one vector ω∗ = (1, . . . , 1). Conse-
quently, we have that g∗ satisfies the propagation criterion of degree 2k. The nonlinearity
follows from the invariance of the transformation and corollary 7.20.

On even dimensional vector space

Theorem 7.25. Let k ≥ 2 and for any nonzero vector ω∗1, ω
∗
2 ∈ F2k

2 with ω∗1 6= ω∗2, there
exist balanced functions on F2k

2 satisfying the propagation criterion with respect to all but
three nonzero vectors in F2k

2 . The three vectors where the propagation criterion is not
satisfied are ω∗1, ω∗2 and ω∗3 = ω∗1 ⊕ ω∗2. The nonlinearities of the functions are at least
22k−1 − 2k.

Proof. The proof is basically analogue to theorem 7.23. The main difference is the choice
of the bases. We choose the bases B1 = {αj|j = 1, . . . , 2k} and B2 = {βj|j = 1, . . . , 2k}.
Let α1 = ω∗1, α2 = ω∗2, β1 = (1, 0, . . . , 0) and β2 = (0, 1, 0 . . . , 0). Analogue to theorem
7.23, it is obvious g∗ defined by g∗(x) = g(Ax) satisfies the propagation criterion with
respect to all but the following three nonzero vectors ω∗1, ω∗2 and ω∗3 = ω∗1 ⊕ ω∗2 in F2k

2 .
Now x = (x1, . . . , x2k), we have g(x) = x1 ⊕ x2 ⊕ f(x3, . . . , x2k), and f is bent on F2k−2

2 ,
are the same as in (7.10). Furthermore, A is a nonsingular matrix such that αj ·A = βj,
j = 1, . . . , 2k. The nonlinearity follows by the invariance of the transformation and
corollary 7.22.

Corollary 7.26. Suppose that 2k = 3t+c where c = 0, 1 or 2. Then there exist balanced
functions on F2k

2 that satisfy the propagation criterion of degree 2t − 1 (when c = 0 or
1), or 2t (when c = 2). The nonlinearities of the functions are at least 22k−1 − 2k.

Proof. We set c1 = 0, c2 = 1 if c = 1 and we set c1 = c2 = 1
2
c otherwise. Further let

ω∗1 = (a1, . . . , a3t+c) and ω∗2 = (b1, . . . , b3t+c), where

aj =

{
1 for j = 1, . . . , 2t+ c1

0 for j = 2t+ c1 + 1, . . . , 3t+ c

and

bj =

{
0 for j = 1, . . . , t+ c1

1 for j = t+ c1 + 1, . . . , 3t+ c.

We know from theorem 7.25 that there exists a balanced function g∗ on F2k
2 satisfying

the propagation criterion with respect to all but three nonzero vectors. The vectors are
ω∗1, ω∗2 and ω∗3 = ω∗1 ⊕ ω∗2 and the nonlinearity of g∗ satisfies Ng∗ ≥ 22k−1 − 2k.
Furthermore, we have the Hamming-weights wt(ω∗1) = 2t + c1, wt(ω∗2) = 2t + c2 and
wt(ω∗3) = 2t+ c. The minimum Hamming-weight among the three Hamming-weights is
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2t+c1. Therefore, it follows that for any nonzero vector ω ∈ F2k
2 with wt(ω) ≤ 2t+c1−1,

we have ω 6= ω∗1, ω∗2 or ω∗3. From theorem 7.25 we know that g∗(x)⊕g∗(x⊕ω) is balanced.
Thus, we conclude that g∗ satisfies the propagation criterion of order 2t+c1−1. If c = 0
or 1 we have c1 = 0, and if c = 2 then c1 = 1. This completes the proof.
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8. Relationships between
Cryptographic Properties

8.1. Relation between Nonlinearity and Correlation
Immunity

In this section, we obtain the relationship between nonlinearity and correlation immunity.
First of all, we show two results given by Chee et al.[8] for arbitrary Boolean functions.
Afterwards, we give a much stronger result using balanced functions.

Lemma 8.1. Let f be a Boolean function in n variables and we define

η(f) =
∣∣∣{w ∈ Fn2 : W (f̂)(w) 6= 0

}∣∣∣ .
Then Nf ≤ 2n−1 − 2n−1η(f)−

1
2 .

Proof. By Parseval’s equation (3.6) we have

22n =
∑
w∈Fn

2

W (f̂)(w)2 ≤ η(f) max
w∈Fn

2

∣∣∣W (f̂)(w)
∣∣∣2 ,

so it follows that maxw∈Fn
2

∣∣∣W (f̂)(w)
∣∣∣2 ≥ 2nη(f)−

1
2 . Using theorem 3.18 we have

Nf = 2n−1 − 1

2
max
w∈Fn

2

∣∣∣W (f̂)(w)
∣∣∣ ≤ 2n−1 − 2n−1η(f)−

1
2 .

Lemma 8.2. If f is any Boolean function in n variables which is correlation immune
of order k and µ(n, k) = 2n −

∑k
i=1

(
n
i

)
, then Nf ≤ 2n−1 − 2n−1µ(n, k)−

1
2 .

Proof. Since f is correlation immune of order k, lemma 4.3 implies that

η(f) = 2n −
∣∣∣{w ∈ Fn2 : W (f̂)(w) = 0

}∣∣∣
≤ 2n − |{w ∈ Fn2 : 1 ≤ wt(w) ≤ k}| = µ(n, k).

Thus, Nf ≤ 2n−1 − 2n−1µ(n, k)−
1
2 follows from lemma 8.1.
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The result of lemma 8.1 is given independently by Zhang and Zheng [49]. Moreover,
they proved the case when even equality holds in the inequality of lemma 8.1. Therefore,
they introduced a new class of functions which they named plateaued functions.

Definition 8.3. Let f be a Boolean function on Fn2 and ξf denote the (1,−1)-sequence of

f . If there exists an even integer r, 0 ≤ r ≤ n, such that
∣∣∣{w ∈ Fn2 : W (f̂)(w) 6= 0

}∣∣∣ = 2r

and each integer W (f̂)(w)2 has the value 0 or 22n−r, then f is called a plateaued
function of order r on Fn2 . f is also simply called a plateaued function on Fn2 if reference
to the order r is not needed.

Lemma 8.4. Let f be a Boolean function on Fn2 . Equality holds in the inequality of
lemma 8.1 if and only if the function f is plateaued.

Proof. For convenience, we define

Θf = max
w∈Fn

2

∣∣∣W (f̂)(w)
∣∣∣ .

We assume that f is a plateaued function. Thus, there exists an even integer r, 0 ≤ r ≤
n, such that η(f) = 2r and each W (f̂)(w)2 takes either the value 0 or 22n−r. Hence, we
have Θf = 2n−

r
2 . Using theorem 3.18, we have

Nf = 2n−1 − 1

2
· 2n−

r
2 = 2n−1 − 2n−1η(f)−

1
2 .

Conversely, we assume that the equality holds in lemma 8.1. From theorem 3.18, we
have also Nf = 2n−1− 1

2
Θf . Hence, it follows 2n = Θf · η(f)

1
2 . Since both η(f)

1
2 and Θf

are integers and in fact powers of 2, it follows that η(f) = 2r for some even integer r,
0 ≤ r ≤ n, and Θf = 2n−

r
2 . Using Parseval’s equation (3.6), we can conclude that the

only nonzero value of W (f̂)(w) is 22n−r. This proves that f is a plateaued function.

The following lemma is a restatement of a relation given by Carlet [4]. It will be useful
proving some of the following results.

Lemma 8.5. For every Boolean function f on Fn2 , we have

(rf (a0), rf (a1), . . . , rf (a2n−1)) ·Hn =
(
〈ξf , l0〉2, 〈ξf , l1〉2, . . . , 〈ξf , l2n−1〉2

)
, (8.1)

where ξ denotes the (1,−1)-sequence of f , li is the ith row of Hn, and ai as defined in
definition 2.1, i = 0, 1, . . . , 2n − 1.

We present an important inequality given by Zhang and Zheng [49] which is helpful
to understand properties of plateaued functions.

Theorem 8.6. Let f be a Boolean function on Fn2 whose (1,−1)- sequence is denoted
by ξf . Then

2n−1∑
j=0

r2
f (aj) ≥

23n

η(f)
,

where the equality holds if and only if f is a plateaued function on Fn2 .
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Proof. See [49].

The next result relates the autocorrelation function to nonlinearity.

Theorem 8.7. Let f be a Boolean function on Fn2 whose (1,−1)-sequence is ξf . Then
the nonlinearity of f satisfies

Nf ≤ 2n−1 − 2−
n
2
−1

(
2n−1∑
j=0

r2
f (aj)

) 1
2

,

where aj is defined in (2.1). Equality holds if and only if f is a plateaued function on
Fn2 .

Proof. Let Θf = max {|〈ξf , lj〉| , j = 0, 1, . . . , 2n − 1}, and we multiply equation (8.1) by
itself and obtain

2n
2n−1∑
j=0

r2
f (aj) =

2n−1∑
j=0

〈ξf , lj〉4 ≤ Θ2
f

2n−1∑
j=0

〈ξf , lj〉2.

Using Parseval’s equation (7.1), we have

2n−1∑
j=0

r2
f (aj) ≤ 2nΘ2

f .

Hence, we have

Θf ≥ 2−
n
2

(
2n−1∑
j=0

r2
f (aj)

) 1
2

.

Using theorem 3.18, we proved the inequality Nf ≤ 2n−1 − 2−
n
2
−1
(∑2n−1

j=0 r2
f (aj)

) 1
2
.

The equality follows by using lemma 8.4 and theorem 8.6.

In the next theorem, we use the property of balancedness to obtain a kind of trade-off
between nonlinearity and correlation immunity. This theorem is given by Tarannikov
[42] and we follow his proof.

Theorem 8.8. Let f be a balanced and correlation immune function of order k, k ≤
n− 2, then

Nf ≤ 2n−1 − 2k+1.

Proof. We start with the case k = n − 2. By using theorem 4.7, we obtain that f is
affine and thus Nf = 0.
We denote with f(x|xi(1) = c1, . . . , xi(t) = ct) the function in n−t variables obtained from
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f(x) by setting xi(1), . . . , xi(t) equal to c1, . . . , ct. We call such a function a subfunction
of f .

Now, we consider the case k ≤ n− 3. We may assume that the function is correlation
immune of order k but not of order k + 1. The generalization of lemma 4.2(iv) gives
that the function f has a subfunction f(x|xi(1) = a1, . . . , xi(k+1) = ak+1) = g in n−k−1
variables such that wt(g) = w 6= 2n−k−2. We may assume w < 2n−k−2 since

wt(f) = 2n−1 =
∑

(c1,...,ck+1)

wt(f(x|xi(1) = c1, . . . , xi(k+1) = ck+1)),

where the sum is over all the 2k+1 possible choices of c1, . . . , ck+1. If this sum has a term
greater than 2n−k−2, then it also has a term less than 2n−k−2. Furthermore, we consider
a subfunction f(x|xi(1) = b1, . . . , xi(k+1) = bk+1) = h, where the given fixed vector
a = (a1, . . . , ak+1) and the vector b = (b1, . . . , bk+1) only differ in the jth coordinate.
Since f is correlation immune of order k, we have with the generalization of lemma
4.2(iv) that

wt(g) + wt(h) = wt(f(x|xi(1) = a1, . . . , xi(j−1) = aj−1, xi(j+1) = aj+1, . . . , xi(k+1) = ak+1))

= 2n−k−1.

This gives

wt(h) = 2n−k−1 − w. (8.2)

Moreover, we consider a subfunction h1 = f(x|xi(1) = b1, . . . , xi(k+1) = bk+1), where the
vector b differs from the given vector a in exactly two coordinates j(1) and j(2). Thus,
we have xj(1) = c and xj(2) = d in vector a and xj(1) = c⊕ 1 and xj(2) = d⊕ 1 in vector
b. Furthermore, we denote with h2 and h3 the subfunctions with the same values as in
h1 expect that xj(1) = c in h2 and xj(2) = d in h3. Using the same argument which gives
(8.2) we have

wt(h2) = wt(h3) = 2n−k−1 − w. (8.3)

Since f is correlation immune of order k, we have

wt(h1) + wt(h3) = 2n−k−1. (8.4)

Using (8.3) and (8.4) together gives wt(h1) = w. Thus, it follows that we have for any
vector b

wt(f(x|xi(1) = b1, . . . , xi(k+1) = bk+1)) =

{
h, if d(a, b) is even

2n−k−1 − h, if d(a, b) is odd.

Moreover, we define an affine function l in n variables by

l =
k+1∑
j=1

xi(j) ⊕ A,
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where A ≡ wt(a) mod 2 is 0 or 1. Then, we compute

d(f, l) =
∑

(b1,...,bk+1)

d

(
f(x|xi(1) = b1, . . . , xi(k+1) = bk+1),

k+1∑
j=1

bi(j) ⊕ A

)
=

∑
b∈Fn

2 , d(a,b) even

wt
(
f(x|xi(1) = b1, . . . , xi(k+1) = bk+1)

)
+

∑
b∈Fn

2 , d(a,b) odd

2n−k−1 − wt
(
f(x|xi(1) = b1, . . . , xi(k+1) = bk+1)

)
= 2kw + 2kw = 2k+1w,

where the second equality is true by the fact that
∑k+1

j=1 bi(j)⊕A is 1 if d(a, b) is odd and
the sum vanishes if d(a, b) is even. Hence, we have

Nf ≤ d(f, l) = 2k+1w ≤ 2k+1
(
2n−k−2 − 1

)
= 2n−1 − 2k+1.

Zhang and Zheng [47] independently arrived to the same result as Tarannikov [42].
Their proof is more complicated because they also proved when equality can occur and
further they showed that under certain conditions the inequality holds even the function
is not balanced.
We can refine theorem 8.8 and show that equality is possible if the Boolean function has
its maximum possible algebraic degree, cf. 4.7.

Theorem 8.9. Let f be a balanced Boolean function in n variables which is correlation
immune of order k ≤ n − 2. Then equality is possible in theorem 8.8 only if f has its
maximum possible degree n− k − 1. If deg f < n− k − 1, then Nf ≤ 2n−1 − 2k+2.

Proof. We use the same subfunction g as in the proof of theorem 8.8. So f(x|xi(1) =
a1, . . . , xi(k+1) = ak+1) = g which has wt(g) = w < 2n−k−2. By theorem 4.7, we know
that deg g ≤ deg f ≤ n− k − 1. Thus, equality is possible in theorem 8.8.
If deg f < n − k − 1, then the subfunction g must have even Hamming-weight because
g is a function in n− k − 1 variables. Therefore, we have w ≤ 2n−k−2 − 2. By the same
proof of theorem 8.8, it follows that Nf ≤ 2k+1w ≤ 2n−1 − 2k+2.

8.2. Relationship between Nonlinearity and the
Propagation Criterion

In this section we observe the relationship between nonlinearity and the propagation
criterion. Before we observe the relationship, we provide a precise description of the
functions satisfying the propagation criterion for the highest degrees k, namely, k = n−2,
n− 1 or n. These functions were characterized by Carlet [5].
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Theorem 8.10. Let n ≥ 4 be even. The Boolean functions in n variables which satisfy
PC(n− 2) are the bent functions, thus in fact they satisfy PC(n).

Let n ≥ 3 be odd. The Boolean functions in n variables which satisfy PC(n − 1) are
the functions of the form

f(x1, . . . , xn) = g(x1 ⊕ xn, . . . , xn−1 ⊕ xn)⊕ h(x1, . . . , xn), (8.5)

where g is any bent function in n−1 variables and h is any affine function in n variables.
The functions which satisfy PC(n− 2) are those of the form (8.5) and of the forms

g(x1 ⊕ xn, . . . , xi−1 ⊕ xn, xi, xi+1 ⊕ xn, . . . , xn−1 ⊕ xn)⊕ h(x1, . . . , xn) (8.6)

or

g(x1 ⊕ xn−1, . . . , xn−2 ⊕ xn−1, xn)⊕ h(x1, . . . , xn), (8.7)

where g and h are as in (8.5).
Equivalently, for odd n ≥ 3, the functions which satisfy PC(n − 2) are the functions

satisfying the conditions: there exists a nonzero vector a with Hamming-weight wt(a) ≥
n− 1 such that

f(x)⊕ f(x⊕ a) is constant; (8.8)

and for every b 6= 0 or a, the function

f(x)⊕ f(x⊕ b) is balanced. (8.9)

Proof. See A.

Let us illustrate theorem 8.10 by the following example.

Example 14. We use the same 3-variable Boolean function f(x) = x1x2⊕x1x3⊕x2x3⊕
x1⊕ 1 as in example 10. The given function satisfies PC(2) and we verify that theorem
8.10 confirms this. Hence,

f(x) = x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1 ⊕ 1

= (x1 ⊕ x2)(x1 ⊕ x3)⊕ 1

= g(x1 ⊕ x2, x1 ⊕ x3)⊕ 1,

where g(y1, y2) = y1y2 is bent. Then in accordance with (8.5) and by renumbering the
variables we obtain that f satisfy PC(2).

Finally, we present a relationship between nonlinearity and the propagation criterion
given by Zhang and Zheng [48]. First, we provide three useful lemmas which we use to
prove the main result about the aforementioned relationship.

The following lemma can be viewed as a refined version of the Walsh transform.
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Lemma 8.11. Let (a0, a1, . . . , a2n−1) and (b0, b1, . . . , b2n−1) be two real-valued sequences
of length 2n, satisfying

(ao, a1, . . . , a2n−1)Hn = (b0, b1, . . . , b2n−1) . (8.10)

Let k be an integer with 1 ≤ k ≤ n − 1. For any fixed i with 0 ≤ i ≤ 2n−k − 1
and any fixed j with 0 ≤ j ≤ 2k − 1, let χi = (ai·2k , a1+i·2k , . . . a2k−1+i·2k) and λj =(
bj, bj+2k , bj+2·2k , . . . , bj+(2n−p−1)2k

)
. Then we have

2n−k〈χi, ej〉 = 〈λj, li〉, (8.11)

with i = 0, 1, . . . , 2n−k − 1 and j = 0, 1, . . . , 2k − 1, where li denotes the ith row of Hn−k
and ej denotes the jth row of Hk.

Proof. See [48]

Lemma 8.12. Let f be a non-bent function on Fn2 , satisfying the propagation criterion
of degree k. Denote the (1,−1)-sequence of f by ξ. If there exists a row l∗ of Hn such that

|〈ξ, l∗〉| = 2n−
1
2
k, then α2t+k+2k−1 is a non-zero linear structure of f , where α2t+k+2k−1 is

the vector in Fn2 corresponding to the integer 2t+k + 2k − 1, t = 0, 1, . . . , n− k − 1.

Proof. See [48].

Lemma 8.13. Let f be a non-bent function on Fn2 , satisfying the propagation criterion
of degree k. Denote the (1,−1)-sequence of f by ξ. If there exists a row l∗ of Hn, such

that |〈ξ, l∗〉| = 2n−
1
2
k, then k = n− 1 and n is odd.

Proof. See [48].

The following theorem presents the main result about the relationship between non-
linearity and the propagation criterion.

Theorem 8.14. Let f be a Boolean function on Fn2 . Further f satisfies the propagation
criterion of degree k. Then

(i) the nonlinearity Nf of f satisfies Nf ≥ 2n−1 − 2n−1− 1
2
k,

(ii) the equality in (i) holds if and only if one of the following two conditions holds:

a) k = n− 1, n is odd and the function f is given by equation (8.5) in theorem
8.10.

b) k = n, f is bent and n is even.

Proof. Let k > 0 and since f is not bent k ≤ n− 1. We rewrite the equation in lemma
8.5 as follows

(rf (a0), rf (a1), . . . , rf (a2n−1)) ·Hn =
(
〈ξf , l0〉2, 〈ξf , l1〉2, . . . , 〈ξf , l2n−1〉2

)
, (8.12)
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where ai is the vector in Fn2 corresponding to the integer i, and li is the ith row of Hn,
i = 0, . . . , 2n − 1. We set i = 0 in (8.11). Thus, we have 2n−k〈χ0, ej〉 = 〈λj, l0〉. We
obtain by applying 2n−k〈χ0, ej〉 = 〈λj, l0〉 to (8.12)

2n−k−1∑
u=0

〈ξ, lj+u·2k〉2 = 22n−k. (8.13)

Due to (8.13), we have 〈ξ, lj+u·2k〉2 ≤ 22n−k. Since u and j are arbitrary, we use theorem

7.4, so we have Nf ≥ 2n−1 − 2n−1− 1
2
k.

For the second part, we assume that the equality holds, that is

Nf = 2n−1 − 2n−1− 1
2
k. (8.14)

From theorem 7.4, we know that there exists a row l∗ of Hn such that |〈ξ, l∗〉| = 2n−
1
2
k.

We have to consider two cases. First, f is not bent and secondly f is bent. If f is not
bent then lemma 8.13 gives us k = n − 1 and n is odd. Then using theorem 8.10, we
have that f must take the form of (8.5). In the case that f is bent, we have that k = n
and n is even. Thus, the equality holds and f attains the upper bound of nonlinearity,
cf. theorem 7.5.
Conversely, we assume that f takes the form (8.5) in a). Since g is bent on Fn−1

2 , we have
Ng = 2n−2−2

n
2
−2. We apply a nonsingular transformation on the variables and consider

a result of Nyberg [32], so we have Nf = 2Ng. Thus, Nf = 2n−1−2
n
2
−1 = 2n−1−2n−1− 1

2
k,

where the second equality holds because k = n−1. Furthermore, it is obvious that (8.14)
holds when n = k, n even and f is bent.
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9. Conclusion and Further Work

This thesis provides an overview of the use of Boolean functions in cryptography.
We characterized the most important properties of Boolean functions and show how

they can be constructed. Especially, we focused on nonlinearity and its relationships to
correlation immunity and the propagation criterion. We used bent functions as a start-
ing point to design highly (balanced) nonlinear functions. Thus, we established lower
bounds on nonlinearity, where the functions also fulfill the strict avalanche criterion.
Furthermore, we presented methods to construct balanced functions satisfying the prop-
agation criterion of higher order. More precisely, we constructed balanced nonlinear
functions satisfying the propagation criterion with respect to all but one or three nonzero
vectors.

Finally, we established relationships between nonlinearity and correlation immunity,
as well as between nonlinearity and the propagation criterion.
For the first relationship, we obtained a upper bound on nonlinearity for balanced and
correlation immune functions of order k with k ≤ n− 2. Additionally, we observed the
influence of the algebraic degree on the nonlinearity.
For the second relationship, we obtained a lower bound on nonlinearity over all Boolean
functions satisfying the propagation criterion of degree k. We also characterized the
functions having minimum nonlinearity.

Further Work

Further work on the relationship between nonlinearity and correlation immunity would
be needed to examine an upper bound on nonlinearity of a kth correlation immune
function on Fn2 for the case k < n

2
.

It would be also worthwhile to study the relationship between the correlation immu-
nity and the propagation criterion. Zhang and Zheng gave some results [48] concerning
this question. They proved that in general the sum of the degree of the propagation
criterion and the order of correlation immunity of Boolean functions on Fn2 is less than
or equal to n− 2. This leads to the result that we cannot expect a Boolean function to
achieve a high degree of propagation criterion as well as a high order correlation immu-
nity.
One should examine whether the algebraic degree has a further impact on these obser-
vations.
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A. Proof of Theorem 8.10

Theorem A.1. Let n ≥ 4 be even. The Boolean functions in n variables which satisfy
PC(n− 2) are the bent functions, thus in fact they satisfy PC(n).

Let n ≥ 3 be odd. The Boolean functions in n variables which satisfy PC(n − 1) are
the functions of the form

f(x1, . . . , xn) = g(x1 ⊕ xn, . . . , xn−1 ⊕ xn)⊕ h(x1, . . . , xn), (A.1)

where g is any bent function in n−1 variables and h is any affine function in n variables.
The functions which satisfy PC(n− 2) are those of the form (A.1) and of the forms

g(x1 ⊕ xn, . . . , xi−1 ⊕ xn, xi, xi+1 ⊕ xn, . . . , xn−1 ⊕ xn)⊕ h(x1, . . . , xn) (A.2)

or

g(x1 ⊕ xn−1, . . . , xn−2 ⊕ xn−1, xn)⊕ h(x1, . . . , xn), (A.3)

where g and h are as in (A.1).
Equivalently, for odd n ≥ 3, the functions which satisfy PC(n − 2) are the functions

satisfying the conditions: there exists a nonzero vector a with Hamming-weight wt(a) ≥
n− 1 such that

f(x)⊕ f(x⊕ a) is constant; (A.4)

and for every b 6= 0 or a, the function

f(x)⊕ f(x⊕ b) is balanced. (A.5)

To prove this intense theorem we need the following lemmas.

Lemma A.2. Suppose that 0 ≤ k ≤ n. A Boolean function in n variables satisfies
PC(k) if and only if for every n-vector u with wt(u) = k and for every n-vector v we
have ∑

w≤u

W (f̂)(w ⊕ v)2 = 2wt(u)+n.

The same equality holds for every u with wt(u) ≤ k.
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Proof. The proof is straightforward.

∑
w≤u

W (f̂)(w ⊕ v)2 =
∑
w≤u

∑
x∈Fn

2

(−1)f(x)⊕〈x,(w⊕v)〉

2

=
∑
w≤u

∑
x,y∈Fn

2

(−1)f(x)⊕f(y)⊕〈(x⊕y),(w⊕v)〉

=
∑
x,y∈Fn

2

(−1)f(x)⊕f(y)⊕〈(x⊕y),v〉
∑
w≤u

(−1)〈(x⊕y),w〉

= 2wt(u)
∑

x,y∈Fn
2 , x⊕y≤u

(−1)f(x)⊕f(y)⊕〈(x⊕y),v〉

= 2wt(u)
∑
s≤u

(−1)〈s,v〉
∑
x∈Fn

2

(−1)f(x)⊕f(x⊕s)

= 2wt(u)+n

The final equality follows from the equation∑
x∈Fn

2

(−1)f(x)⊕f(x⊕s) = 0 for nonzero s ≤ u.

The last statement of the theorem follows immediately by the same proof.

Lemma A.3. We assume that for every nonnegative integer m we have 2m = a2 + b2 +
c2 + d2, where a, b, c, d are nonnegative integers.
Then for m even, either one a, b, c, d is 2

m
2 and the others are 0, or each of a, b, c, d is

2
m
2
−1. For m is odd, two of the a, b, c, d are 2

m−1
2 and the other two are 0.

Proof. The proof follows by induction on m for m ≥ 3 and we have to differ between
the case m is odd or even. Furthermore, we use the fact that if a, b, c, d are not all even,
then 8 does not divide a2 + b2 + c2 + d2.

Proof of theorem 8.10. [10] We start to prove the assertions about the functions which
satisfy PC(n− 2). In the first case with n even, any bent function satisfies PC(n) and
so they satisfy PC(n− 2). Secondly, n is odd. By using lemmas 5.18 and 5.19 it follows
that any function of the form (A.1), (A.2) and (A.3) satisfies (A.4) and (A.5) (due to
the fact that g is bent), and therefore must satisfy PC(n− 2). Next, we show that the
converse is also true in both cases. Thus, we use lemma A.2. If f satisfies PC(n − 2),
then for every n-vector u with Hamming-weight n− 2 and every n-vector v we have

W (f̂)(v)2 +W (f̂)(v ⊕ ei)2 +W (f̂)(v ⊕ ej)2 +W (f̂)(v ⊕ ei ⊕ ej)2 = 2n+2, (A.6)

where i and j are the positions in u where 1 appears and ek is the unit vector in Fn2 ,
i.e. the vector whose only nonzero entry is in position k. Thus, it follows that equation
(A.6) holds for any distinct i and j.
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First, we assume that n is even. Thus, lemma A.3 provides two possibilities for
the summands in (A.6). We start with the first possibility. If this possibility holds

then we would have W (f̂)(v) = ±2
n
2

+1 for some v ∈ Fn2 . Furthermore, for every z

of Hamming-weight 1 or 2 we have W (f̂)(v ⊕ z) = 0 by lemma 3.2. Now, let w =
ei ⊕ ej ⊕ ek be any vector of Hamming-weight 3. By using lemma A.3 with v replaced

by v ⊕ ek we obtain that W (f̂)(v ⊕ w) = ±2
n
2

+1. Hence, we conclude that if n ≥ 4

and i, j, k, t are four distinct indices, then both Walsh transforms W (f̂)(v⊕ ei⊕ ej ⊕ ek)
and W (f̂)(v ⊕ ei ⊕ ej ⊕ et) are equal to ±2

n
2

+1. This contradicts (A.6) with v replaced
by v ⊕ ei ⊕ ek and {ei, ej} replaced by {ek, et}, since then the left-hand side would be

≥ 2n+3. Hence, the second possibility in lemma A.3 must hold, that is W (f̂)(v) = ±2
n
2

for every v. Therefore, it follows that f is bent.
Next we assume that n is odd and f satisfies PC(n − 2). By using lemma A.3, for

every vector v and any distinct i and j we obtain that two of the integers W (f̂)(v),

W (f̂)(v⊕ ei), W (f̂)(v⊕ ej) and W (f̂)(v⊕ ei⊕ ej) are equal to ±2
n+1

2 and the other two
are 0.
First, we assume that for some i, 1 ≤ i ≤ n, and for some v in Fn2 we have W (f̂)(v) and

W (f̂)(v ⊕ ei) are equal to ±2
n+1

2 . Since we can replace f(x) by f(x) ⊕ 〈v, x〉, we may
assume without loss of generality that v = 0. Moreover, we can deduce by induction on
wt(w) that for every vector w = (w1, . . . , wn) with wi = 0 the numbers W (f̂)(w) and

W (f̂)(w ⊕ ei) are equal to 2
n+1

2 if wt(w) is even, and are equal to 0 otherwise.
We suppose that i < n and define

Ei =

{
w :
⊕
j 6=i

wj = 0

}
.

By our assumptions it follows that for all w /∈ Ei we have W (f̂)(w) = 0 and for all

w ∈ Ei we have W (f̂)(w) = ±2
n+1

2 . Thus, by the inverse Walsh transform (3.2) we
obtain for all u ∈ Fn2

f̂(u) = 2−n
∑
w∈Ei

W (f̂)(w)(−1)〈w,u〉. (A.7)

We can express every element of Ei as (w′, hi(w
′)), where w′ = (w′1, . . . , w

′
n) ∈ Fn−1

2 and
hi(w

′) =
∑

j 6=iw
′
j. Then it follows from (A.7) that

f̂(u) = 2−n
∑

w′∈Fn−1
2

W (f̂)(w′, hi(w
′))(−1)〈w

′,u′〉⊕unhi(w′), (A.8)

where u′ = (u1, . . . , un−1). We denote the vector in Fn−1
2 in which the only nonzero entry

is in position i with e′i. Thus, we have

〈w′, u′〉 ⊕ unhi(w′) = 〈w, (u′ ⊕ une′i)〉.
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It follows that the right-hand side of the equation (A.8) is g(u′⊕une′i) for some function
g in n variables.
To complete the proof in the case i < n we need to show that g is bent, that is, f has
the form (A.2). Let us suppose that f is not bent. Then we have by lemma 5.18 that
there exists a nonzero b ∈ Fn−1

2 such that g(u′) ⊕ g(u′ ⊕ b) is not balanced. Thus, we
have that the functions f(u) ⊕ f(u ⊕ (b, 0)) and f(u) ⊕ f(u ⊕ (b ⊕ e′i, 1)) are also not
bent. This follows by the fact that each function f(u) = g(u′ ⊕ une′i) , for all u ∈ Fn2 ,
is unbalanced in u′ with the same unequal count of zeros and ones if we fix un = 0 or
un = 1. Since the function f satisfies PC(n− 2), the vectors (b, 0) and (b⊕ e′i, 1) must
both have Hamming-weight ≥ n − 1 (by lemma 5.18). This is a contradiction if n ≥ 5
and if n ≥ 3 we have that g is a quadratic non affine function in four variables and such
functions are bent. The proof for the case i = n follows by exchanging n and n − 1 in
(A.2) with i = n− 1. This gives us the functions of the form (A.3).

To complete the proof, for any function f satisfying PC(n−2) the function must have
one of the forms (A.1), (A.2) and (A.3). The only remaining case is the case in which

no i and v exist such that W (f̂)(v) and W (f̂)(v ⊕ ei) are equal to ±2
n+1

2 . We choose

the vector v such that W (f̂)(v) = 2
n+1

2 . Without loss of generality, we can take v = 0

and hence it follows by our assumptions that W (f̂)(ei) = 0 for every i. Once again, we

can deduce by induction on wt(w) that for every w we have W (f̂)(w) = ±2
n+1

2 is wt(w)

is even and W (f̂)(w) = 0 if wt(w) is odd. Now we define E = {w|wt(w) is even}. With
u′ = (u1, . . . , un−1) ∈ Fn−1

2 and for every u ∈ Fn2 we can replace Ei by E in (A.7) and we
get

f̂(u) = 2−n
∑

w′∈Fn−1
2

W (f̂)(w′, h(w′))(−1)〈w
′,u′〉⊕unh(w′),

where h(w′) =
∑n−1

i=1 w
′
i. Therefore, we have

f̂(u) = 2−n
∑

w′∈Fn−1
2

W (f̂)(w′, hi(w
′))(−1)〈w

′,(u′⊕un(1,...,1)〉,

and this implies that f(u) = g(u′⊕ un(1, . . . , 1), where g(u′) = f(u′, 0) must be bent by
the fact that it is a function in an even number n− 1 variables and satisfies PC(n− 2).
Hence, we have a function f of the form (A.1).

The last statement that for n odd the only functions which satisfy PC(n − 1) are
those of the form (A.1) was proved by Preneel et al. [35, Theorem 2].
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B. Vectorial Boolean functions

In this chapter we observe multi-output Boolean functions. This section is mainly based
on Carlet [3].
Multi-output Boolean functions are functions from the vector space Fn2 to the vector
space Fm2 , for some positive integers n and m. Obviously, the functions include the
(single-output) Boolean functions which is the case m = 1.
Our aim is to give an introduction to multi-output Boolean functions and show similari-
ties to results given in the previous chapters for Boolean functions. Due to the similarity
we abdicate the proofs.

Definition B.1. Let n and m be positive integers. The function F : Fn2 −→ Fm2 given
by F (x) = (f1(x), . . . , fm(x)), at every x ∈ Fn2 , is called a n-input m-output Boolean
function ((n,m)-function for short) and fi is called the coordinate function for i =
1, . . . ,m. When the numbers n and m are not specified, (n,m)-functions are called
multi-output Boolean functions, vectorial Boolean functions or S-Boxes.

Remark. The last term is often used in cryptography. This term is assigned to vectorial
Boolean functions whose role is to provide confusion into the cryptosystem.

Definition B.2. The component function is the nonzero linear combination of the co-
ordinate functions of F .

We can easily extend the notion of the algebraic normal form of Boolean functions
to (n,m)-functions. Obviously, each coordinate function of a functions F is uniquely
represented as a polynomial on n variables with coefficients in F2. We can express the
function F as a polynomial of the same form with coefficients in Fm2 . Thus F can be
expressed as a unique polynomial in Fm2 [x1, . . . , xn] / (x2

1 ⊕ x, . . . , x2
n ⊕ x) as

F (x) =
∑

I∈P(N)

aIx
I , (B.1)

where P(N) denotes the power set of N = {1, . . . , n} and aI belongs to Fm2 . So by
keeping the ith coordinate of each coefficient in the expression (B.1) we obtain the ANF
of the ith coordinate function of F.

The condition of balancedness for multi-output functions is as important as for Boolean
functions. Unbalanced multi-output functions have an irregular probability distribution
on the ciphertext which give space for statistical attacks.

Definition B.3. The vectorial Boolean function F is said to be a balanced (n,m)-
function if #{x|F (x) = a} = 2n−m for any a ∈ Fm2 and x ∈ Fn2 .
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Lidl and Niederreiter [18] characterized balanced multi-output Boolean functions by
the balancedness of their coordinate functions.

Proposition B.4. An (n,m)-function is balanced if and only if all nonzero linear com-
binations of f1, . . . , fm are balanced.

In the next step we want to introduce the useful Walsh transform for multi-output
Boolean functions.

Definition B.5. The Walsh transform of an (n,m)-function F is a map W : Fn2×Fm2 −→
R defined by

W (F )(u, v) =
∑
x∈Fn

2

(−1)〈v,F (x)〉⊕〈u,x〉,

where u ∈ Fn2 and v ∈ Fm2 \ {0}.

Now we turn our attention to the cryptographic properties, in particular to nonlin-
earity. Nyberg [31] introduced the notion of nonlinearity for multi-output functions.

Definition B.6. The nonlinearity NF of an (n,m)-function F is the minimum nonlin-
earity of all the component functions x ∈ Fn2 7→ 〈v, F (x)〉, where v ∈ Fm2 \ {0}.

In other words, the nonlinearity NF is equal to the minimum Hamming-distance be-
tween all the component functions of F and all affine functions on Fn2 . According to the
theorem 3.18, we also can express the nonlinearity in term to the maximal magnitude
of its Walsh transform of F . We have

NF = 2n−1 − 1

2
max

u∈Fn
2 , v∈Fm

2 \{0}

∣∣∣∣∣∣
∑
x∈Fn

2

(−1)〈v,F (x)〉⊕〈u,x〉

∣∣∣∣∣∣
The upper bound of nonlinearity given in theorem 7.2 is also valid for every (n,m)-
function. Thus

NF ≤ 2n−1 − 2
n
2
−1. (B.2)

In addition to (B.2) we can characterize (n,m)-bent functions.

Definition B.7. An (n,m)-function is called bent if it achieves (B.2) with equality.

We note that an equivalent definition is given by an (n,m)-function is bent if and
only if all the component functions are bent. The algebraic degree of any (n,m)-bent
function is at most n

2
.

We recall from (vi) of theorem 6.20 that any Boolean function f on Fn2 is bent if and
only if its directional derivative fv(x) = f(x)⊕ f(x⊕ v) is balanced for all nonzero v in
Fn2 . Thus, we can give a similar description for (n,m)-functions.
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Proposition B.8. An (n,m)-function is bent if and only if all of its derivatives Fv(x) =
F (x)⊕ F (x⊕ v) is balanced for all nonzero v in Fn2 .

As we have seen bent functions only exist for n is even. An (n,m)-bent function
exist only under the same condition, but Nyberg [30] showed that this condition is
not sufficient for the existence of (n,m)-bent functions. Therefore she introduced the
following result.

Proposition B.9. An (n,m)-bent function exist only if n is even and m ≤ n
2
.

The next result is given by Chabaud and Vaudenay [7]. They show that under certain
conditions, there is a better upper bound than (B.2).

Theorem B.10. Let n and m be any positive integer such that m ≥ n − 1. Let F be
any (n,m)-function. Then

NF ≤ 2n−1 − 1

2

√
3 · 2n − 2− 2

(2n − 1)(2n−1 − 1)

2m − 1
.
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