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1. Introduction

He who loves practice without theory is like
the sailor who boards the ship without a
rudder and compass and never knows where
he may cast.

LEONARDO DA VINCI

The usage of cryptography have tremendously increased in the last years, as the use
of the internet has exploded. A basic aim of cryptography is to enable two parties to
confidentially communicate over an insecure channel. This means that any adversary
is unable to recover the message (also called plaintext). The most common activity in
cryptography is encryption and decryption. The term encryption describes the trans-
formation of the plaintext into the ciphertext. If the ciphertext is used as input into the
reverse transformation, then we recover the plaintext. This describes the decryption of
a ciphertext.

We speak of symmetric key cryptography if the encryption transformation is trivially re-
lated to the reverse decryption transformation. In case the encryption key can be made
public, we speak of public key cryptography. This development came up in the mid
1970s when Diffie and Hellman published their paper New Directions in Cryptography.
Public key cryptography is often preferable to symmetric key cryptography because it
allows to communicate in a secure way without having previously shared keys.

In the late 1940s, Shannon [39] introduced the fundamental concepts of confusion and dif-
fusion to achieve security in cryptosystems. Confusion renders the relationship between
the key and the ciphertext as complex as possible. This is reflected in the nonlinearity
of components of the cryptosystem. Diffusion means that the ciphertext depends on the
plaintext in a complex manner. Thus, we have diffusion when changing a small part in
the plaintext leads to a large change in the ciphertext.

The question arises whether there are functions that can be utilized to achieve this. We
will show that suitable Boolean functions easily provide confusion as well as diffusion.
Hence, we deal with Boolean functions and their cryptographic properties.

Objectives

Boolean functions play an important role in cryptography, beginning with their use in
linear feedback shift registers (LFSRs). In many stream ciphers, the generation of the
keystream consists of a linear part. It is usually composed of one or several LFSRs and a
nonlinear filtering function f which produces the output. The main cryptographic prop-
erties required for constructing such a function f are: (1) balancedness, (2) algebraic



degree, (3) correlation immunity, (4) propagation criterion and (5) nonlinear-
ity.

The property of balancedness, that is f outputs the same number of zeros and ones,
prevents the system from leaking any statistical information about its structure. This
means the system does not reveal any information about the plaintext if the ciphertext
is known.

A high algebraic degree is needed to prevent the system against attacks by the Berlekamp-
Massey algorithm. This algorithm outputs the minimal polynomial of a binary sequence
in finitely many steps, thus, we know an upper bound of its algebraic degree.

Correlation immune Boolean functions were introduced by Siegenthaler [40] for their
ability to resist against certain kinds of divide and conquer attacks on stream ciphers.
That is, f is correlation immune of order k if its output is statistically independent of
any combination of k input variables. A balanced Boolean function which is correlation
immune of order k is called k-resilient. Siegenthaler [40] proved a fundamental relation
between the order of correlation immunity and the algebraic degree of a Boolean func-
tion. On the one hand, he showed that the maximum possible algebraic degree of a
Boolean function in n variables which is correlation immune of order £ is at most n — k.
On the other hand, if the function is also balanced the algebraic degree is at most n—k—1.

A n-variable Boolean function is said to satisfy the propagation criterion (PC) with
respect to a nonzero vector if complementing the input coordinates results in the output
of the function being complemented 50% of the time over all possible input vectors. Also
a Boolean function may satisfy the generalization, the propagation criterion of degree k,
if complementing & or less input coordinates results in the output of the function being
changed 50% of the time over all possible input vectors. Another important criterion
is the strict avalanche criterion (SAC). The strict avalanche criterion coincides with
the propagation criterion of degree 1. Lloyd [19] pointed out that if a function satisfies
the strict avalanche criterion of degree k, the function also satisfies the strict avalanche
criterion of degree j for any j = 0,...,k — 1. We can establish the same result for
the propagation criterion. Furthermore, we present a recurrence relation to obtain a
result on counting SAC functions and provide construction methods to design Boolean
functions which satisfy the propagation criterion.

In the mid 1970s, Rothaus [36] introduced a class of Boolean functions which he
named bent functions. Bent functions only exist in even dimension and possess the high-
est nonlinearity. Furthermore, they also satisfy the propagation criterion with respect
to all nonzero vectors [I1]. However, their characteristic to exist only in even dimension
prohibits their immediate application in practical usage. A second drawback is their un-
balancedness. In cryptographic applications, e.g. the design of strong substitution boxes
(S-Boxes), it is often required that the output of the function must act as a uniformly
distributed random variable if the input coordinates of a Boolean function are selected



randomly independent [44]. In other words, the function has to be balanced.

Bentness is closely related to the study of difference sets, Hadamard matrices and the
signs of the Walsh-coefficients. Furthermore, Rothaus [36] showed that the degree of a
bent function is at most § for n > 2.

The construction of bent functions has attracted much attention. There are primary
constructions and secondary constructions. Primary constructions include bent func-
tions that are not used as building blocks in previous constructions. As an example of
primary construction, we present the Maiorana-McFarland construction [22]. We ob-
serve a non-recursive method given by Camion et al. [I] using the Maiorana-McFarland
construction as a starting point to construct k-resilient functions. Moreover, we follow
Carlet’s approach [5] using the Maiorana-McFarland construction to design functions
satisfying the propagation criterion (of degree k).

Secondary constructions lead to recursive constructions. We observe the possibility to
construct bent functions based on concatenation. Dillon [I1] pointed out that functions
of this type may be decomposed into simpler functions on lower dimensional vector
spaces. Primary constructions potentially lead to wider classes of bent functions than
secondary constructions.

The nonlinearity of a Boolean function is yet another important cryptographic prop-

erty. Pieprzyk and Finkelstein [33] introduced the notion in the late 1980s as the min-
imum Hamming-distance from the Boolean function f to the set of all affine functions.
Thus, we can say that nonlinearity measures the ability of a system to resist against
being expressed as a set of linear equations. Furthermore, a strong need exists for highly
nonlinear functions to make the ciphers withstand linear attacks as introduced by Mat-
sui [24].
Seberry et al. [38] showed that the upper bound of nonlinearity is given by 2"~ — 251
and only attainable by bent functions. Owing to the fact that high nonlinearity is not the
only important property, bent functions may not directly be used. However, they serve
as an excellent starting point to design highly (balanced) nonlinear functions which also
fulfill other properties. Moreover, we observe whether there is a bound of nonlinearity
for k-resilient Boolean functions for £ < n — 2. Furthermore, we examine the impact of
the algebraic degree on the bound of nonlinearity.

To sum up, our main objectives are to provide basic notions about Boolean functions
and their properties. In particular, we focus on nonlinearity and the relationships be-
tween nonlinearity and correlation immunity, as well as nonlinearity and the propagation
criterion.

Structure of the thesis

This thesis consists of three parts. The first part has an introductory character and
serves to get used to Boolean functions and further basic terms that are used within
the thesis. In particular, the Walsh transform is of central importance, as it turns out
that the Walsh transform is a very powerful tool to prove many results concerning the



different properties. Chapter [2| and [3| are devoted to those preliminaries.

The second part of this thesis starts in chapter 4] and introduces correlation immu-
nity. We provide basic definitions and observe ways to construct (balanced) correlation
immune functions. This part is extended with the strict avalanche criterion and its
generalization, the propagation criterion. Especially, the concept of diffusion coincides
with the strict avalanche criterion. We turn our attention to the observation whether
there are constructions that enable to design functions that fulfill the strict avalanche
criterion (of higher order) or the propagation criterion (of higher order), respectively.
These observations are part of chapter [f

The third part starts with chapter [] in which we introduce Bent Boolean functions.
These functions only exist in an even number of variables and attain the upper bound of
nonlinearity. Chapter [7]is devoted to the observations about nonlinearity and provides
construction method to design highly (balanced) nonlinear functions. The last element
of the third part is displayed in chapter [§, where the relationships between nonlinearity,
correlation immunity and the propagation criterion are observed.

Finally, the thesis closes with a conclusion and an outlook to further work.



2. Generalities on Boolean Functions

2.1. Boolean Functions

The purpose of this section is to make some preliminary definitions on Boolean functions.
Let F3 be the vector space of dimension n over the two-element Galois field Fy. F consist
of 2" vectors written in a binary sequence of length n.

The vector space F3 is equipped with the scalar product (-,-): Fy x F} — Fy with

(a,b) = éai . bi,
=1

where the multiplication and addition & are over [Fs.
However, if additions are performed in the real numbers, then it is clear from the context.

Definition 2.1. A Boolean function of n variables is a function f: Fy — Fy (or
simply a function on F%). The (0, 1)-sequence is defined by (f(ao), f(ai),..., f(az_1)),
also called the truth table of f, where ag = (0,...,0,0),a; = (0,...,0,1),..., G901 =
(1,...,1,1), ordered by lexicographical order.

Definition 2.2. The logical negation or complement of a Boolean function f is defined
by f=f®1.
First, we introduce affine Boolean functions.
Definition 2.3. An affine function f on F} is a function that takes the form
fz)={a,z) ®c=a121 D - D a,z, Dc, (2.1)
where a = (ay,...,a,) € Fy and ¢ € Fy. If ¢ =0, then f is a linear function.

The sequence of an affine (or linear) function is called an affine (or linear) sequence.

Definition 2.4. The set of all Boolean functions is denoted by
Fo ={f1f: F3 = Fa}.

The subset of all affine Boolean functions in the space F, is denoted by
A, = {a|a is affine and o € F,, }.

We define the subset of all linear Boolean functions in the space F, by
L, = {B|B is linear and B € F,}.



Remark.

1. The set of all affine functions consist of the linear functions and their negations.

2. The cardinalities of the above sets are easily observed as
| Fal =27, |A,| =2""" and |L,|=2".
Every once in a while, we would like to have functions with values in the set {1, —1}.

Thus, we introduce the sign function.

Definition 2.5. To each Boolean function f: Fy — [Fy we associate its sign function,
or character form, denoted by f: Fy — R* C C* and defined by

~

fla) = (=1)/®.

The (1, —1)-sequence (or simply sequence) is defined by ((—1)/(@) .  (—1)flan-1)),
where a; as defined in definition [2.1]

The behavior of the sign function on the sum and product of Boolean functions is
shown in the following proposition.

Proposition 2.6. If f and g are Boolean functions on ¥, the following statements hold:

1. f®g=[g.
2. 2fg=1+f+9— fg.
Proof.

1. This claim is straightforward:

—

fog=(-1)% =(-1)- (1) = Jg.
2. This claim is provable with the observation J/‘:: 1 —2f, that is

L+ f+G—fa=1+(1-2f)+(1—29) — (1 —2f)(1—29)
=2 —4fg=2(1-2fg) =2fg

]

Definition 2.7. The Hamming-weight of a Boolean function f: Fy — Fq is the
number of 1s in the truth table of f.

Next, we introduce the notion of distance between two Boolean functions.
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Definition 2.8. For two Boolean functions f,g: Fy — Fo we define the Hamming-
distance as the number of arguments where f and g differ, that is

d(f,9) = #{x € F3|f(x) # g(x)}.
In other words, the Hamming-distance is the number of 1s in the truth table of f + g.

We can also express the Hamming-distance in terms of the Hamming-weight as d( f, g)
wt(f @ g).

It is simple to show that the Hamming-distance d is a metric on F5. It follows by
noting that d(f, g) equals the number of entries that are needed to turn f into g. Thus,
d(f,g) is zero if and only if f = g. It is obvious that the Hamming-distance is symmetric
and the triangular inequality is shown in lemma [2.10]

Definition 2.9. The support of a Boolean function f is defined as supp(f) = {z €
Fy|f(x) =1}

The Hamming-weight can also be expressed in the notions of the Hamming-distance
and the support of a Boolean function as wt(f) := d(f,0) = |supp(f)].
Let us illustrate the notions by the following example.

Example 1. Let f and g be Boolean functions in two variables:

The truth table of the two Boolean functions is:

v | flg| fDg
O 0010 0
0O 101 1
1 0111 0
1 11010 0

Therefore, we compute

wt(f) =

The following lemma provides us with some properties satisfied by the Hamming-
distance.

Lemma 2.10. The Hamming-distance satisfies the following properties:
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1. Let f,g.h € Fy: d(f.g) +d(g,h) = d(f,h).

2. Let g = g @1 be the negation of g, then d(f,g) = 2" —d(f,g). This is the number
of arguments where f and g coincide.

3. The number of roots in fis d(f,1) = 2" — wt(f).
Proof. 1. Let f,g,h € F,: if f(x) # h(x) so f(x) # g(x) or g(x) # h(x) then
d(f,g) +d(g, h) = #{x € F3|f(2) # g(2)} + #{x € F3|g(x) # h(z)}
> #{e € B3| f(x) # h(z)} = d(f, h).

2. Let g be the negation of g then

d(f,9) = #{x € F3|f(x) # g(x)}
= #{z e F3|f(z) = g()}
=2" — e e F3|f(z) # g(2)} = 2" — d(f,9).

3. Let f € F, then

d(f,1) = #{x € F3|f(x) # 1} = 2" = d(f,0) = 2" — wi(f).
O

Theorem 2.11. If we have two affine functions o, 8 € A,,, then the distance between
them 1is equal to

0 ifa=0

de, f) = 92" ifa=p

2n=1 4n other cases.

Proof.

e If & = (8 then there are no arguments x € F} where o and /3 differ. Therefore, the
distance between them is equal to zero.

o If a = 3 =B @1 then the functions differ in every argument = € F}. Therefore,
the functions have a maximum distance which is equal to 2".

e If a and 3 are arbitrary affine functions, simultaneously o # 3 and « # 3, then
we have

d(av, B) = #{x € F3la(z) # f(x)} = #{x € F3la(r) = S(x)}

= 2" — {z € F3la(z) # B(a)} = 2"7".

12



]

We introduce the notion of balancedness. Moreover, we note that balancedness of a
Boolean function is a significant cryptographic property in the way that the output of
the function should not leak any statistical information about structure.

Definition 2.12. A (0, 1)-sequence ((1, —1)-sequence) is called balanced if it contains
an equal number of zeros and ones (ones and minus ones). A function is balanced if its
sequence is balanced i.e. wt(f) = 2"""1.

Next we introduce the notion of equivalence of two Boolean functions.

Definition 2.13. Two Boolean functions f,g on Fy are called (affinely) equivalent if
f(z) = g(Ax @ b), where a,b € FY and A is a n X n nonsingular matriz. If no such
transformation exists, then f, g are called inequivalent.

Definition 2.14. The autocorrelation function ?f(a) with a shift a € FY is defined
as

Fa) = Y Jla) fla®a)= Y (~1)f @@/,

z€FD z€F}
We shall write 7(a) if there is no danger of confusion.
Definition 2.15. Let f be a function on Fy. a € F% is called a linear structure of f if
[7(a)| =27,

that is, if f(z)- f(z @ a) is a constant.

The set of all linear structures of a function f form a linear subspace of Fy. The
dimension gives a measure of linearity. This measure is upper bounded by 2". The
bound is attainable by the allzero vector in Fy and follows from lemma A nonzero
linear structure is cryptographically undesirable.

Definition 2.16. The correlation value between two Boolean functions g and h is
defined by

d(g, h)
2n—1 '

2.2. The Algebraic Normal Form

C(gah) =1-

We introduce the most commonly used representation of a Boolean function in cryp-
tography and coding, namely, the n-variable polynomial representation over Fy. This
representation is also called Algebraic Normal Form. The benefit of this representation
is that we can immediately obtain the algebraic degree. Furthermore, we still have the
truth table representation of the Boolean function of which the advantage is to obtain
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e.g. the Hamming-weight. Therefore, it is eligible to switch between both constructions.

Each vector u = (uq,...,u,) corresponds to the set of indices which index those
coordinated of u containing its 1’s, that is the set {i|u; = 1}. This identification on F%
induces the natural (partial) order which we call the inclusion order.

Definition 2.17. For any vectors u = (uy,...,u,) and v = (vy,...,v,) in FY, we say
that w is contained in v (and write u < v) if u; < wv; for alli =1,...,n.

Moreover, we need an inversion theorem which was introduced by Hall [16]. It is a
specific case of ”Mobius inversion in a partially ordered set”.

Theorem 2.18. Let f and g be functions from F3 to Fy and let T3 be partially ordered
by the inclusion order <. Then the following statements are equivalent:

(i) f(u) =3, 9(v) for allv € Fy,

(“’) g(“) = ngu f(U) fOT all v € FEL
Proof. We apply (i) on the right side of (i7) and obtain

D) =3 gw)= > glw) =Y 2" g(w) = g(u),

v<u v<u wlv wlv<u w<u

where the last equality is a consequence of Fy having characteristic 2. Therefore, (7)

implies (i7). By changing f and g it follows that (i7) implies (), too. O
Theorem 2.19. Every Boolean function f: F} — Ty can be expressed as a unique
polynomial in Folzy, ..., x,]/ (22 D2y, ..., 22 Dwy):
f(xr,.xn) = Y a(u)ait---ay
u€lFy
where a(u) € Fy with a(u) = 3 ., f(r) and uw = (w1, ...,u,). This representation is

called the Algebraic Normal Form or ANF for short.

Proof. Let f be any function from F} to Fy. By Lagrange interpolation, f is given by
the polynomial

n

) [ ew o)

u€Fy j=1

which we rearrange to the form

> glwaitay? .y

uelFy

14



By using the above inversion theorem , we have g(u) = > ., f(¥) = a(u) which
gives us the existence of the algebraic normal form for every Boolean function. This im-
plies that the mapping, from every polynomial ¥ € Fy[zy, ..., z,]/(2? ® z1,...,22 ®
x,) to the corresponding function x € F§ — J(z), is onto F,. Since the size of
Folzy,...,20]/ (22 & x1,...,22 & x,) and F, are equal, this correspondence is one-to-
one. [

Another possible representation of the same ANF uses an indexation of subsets of
N ={1,...,n}. Thus, we obtain the form

f(z) = Z ar (H@) = Z arz?, (2.2)
) )

TEP(N il TEP(N
where B (V) denotes the power set of V.
Example 2. We consider the function f with the following truth table:

r el
000
001
010
011
100
101
110
111

~—

-
HOOHOO»—*O’Q

It is the sum of the atomic functions fi, fo and f3 whose truth tables are

v €3 | filz) | fal) | fa(x)
000 0 0 0
001 1 0 0
010 0 0 0
011 0 0 0
100 0 1 0
101 0 0 0
110 0 0 0
111 0 0 1

Now we observe where the function fi(z) takes the value 1. The function f;(z) takes
the value 1 if and only if 1 @1 =1, 29 1 =1 and x3 = 1. Thus, we obtain the ANF
by expanding the product (zq @ 1)(z2 @ 1)z3 = fi(z). Similar observations provide the
ANFs for fo(x) and f3(x) with fo(x) = z1(2xe @ 1)(z3 & 1) and f3(z) = x12925. Finally,
we can see that the ANF of f(x) equals (z1®1)(z2®1)z3 B a1 (22 1) (23D 1) Bry2923 =
T1 D X2 D X179 D X123 D T123 D T3 B T12273.

15



Definition 2.20. The number of variables in the highest order monomial with nonzero
coefficient is called the algebraic degree.

Example 3. We take the function f(x) = x; ® x129 ® 123 G x12223. The highest order
monomial with a nonzero coefficient is xyz923. Thus, the algebraic degree is deg(f) = 3.

Obviously, affine functions have at most degree one. Next, we introduce the term
homogeneity of a Boolean function.

Definition 2.21. A Boolean function is said to be homogeneous if its algebraic normal
form only contains terms of the same degree.

Example 4. We consider the function f(z) = z129 @ 2123 ® x9x3. Then we obtain
deg(f) = 2 and the ANF only contains terms of the same degree. Thus, the function is
homogeneous.

Remark. The algebraic normalform is not the only representation to express a Boolean
function. Also the disjunctive normal form (DNF) is a possibility. Carlet and Guillot
introduced yet another representation, the so-called numerical normal form (NNF).

As mentioned before, we want to evaluate the ANF. Therefore, we provide the follow-
ing example which shows the utility to switch between the polynomial representation of
any function and its truth table.

Example 5. Let us assume that we have an eight bit string of the algebraic normalform
of a function f € F3 as follows

(00101101).
Then we can interpret this as

a(000) = 0,a(001) = 0,a(010) = 1,a(011) = 0,

a(100) = 1,a(101) = 1,a(110) = 0,a(111) = 1,
and we obtain the polynomial

0-100-23D1 - 22D 0 -22235P1-21 D1 -21235D 02122 D 1 - 217973.
The related truth table is

f£(000) =0, f£(001) =0, £(010) =1, f(011) =1,

f(100) =1, f(101) = 0, f(110) =0, f(111) =0,
and we write the truth table as a bit string

(00111000).

If we have given the bit string of the truth table we can achieve the following polynomial
(written in short form)

1'1’2@1'1’21‘3@1'1’1.

We evaluate the polynomial analogue to the polynomial above and get the bit string
representation of the algebraic normal form.

16



We close this section with the introduction of a useful notation to obtain the functional
representation of a concatenated sequence. Let a = (i1, ...,1i,) be a vector on F} and D,
is a function on F} given by

Da(y17"'7yn) = (yl@ll@:l)(yn@zn@l)
With this notation we obtain the following lemma.

Lemma 2.22. [38] Let fo, fi1,..., fon_1 be functions on Fy. Let &; be the sequence of f;,
i=0,1,...,2" = 1. Then & = (0,1, .- .,&m_1) is the sequence of the following function
on Fy*™

2"—1

f(ywr) = @ Daz(y)fl(x)7

where y = (Y1, -+, Ym), = (x1,...,2,) and a; as defined in definition (2.1)).

To make ourselves familiar with this notation, we observe that if & and & are the
sequences of functions f; and fy on Fy, then £ = (&, &) is the sequence of the following
function g on Fyt

g(u,$1,...,l‘n) = [flqu]n—l—l = (U@D'fl(xlw--;xn) +u'f2(x17-~;xn)‘

2.3. First Considerations of Nonlinearity

Nonlinearity is one of the most important cryptographic properties. It is introduced
rather briefly at this point, we will however deal with nonlinearity intensely in chapter
[

As before, we denote with A,, the set of all affine functions and the Hamming-distance
(2.8) is the number of arguments where the Boolean functions f and g differ. In addition,
Pieprzyk and Finkelstein [33] introduced the notion of nonlinearity as follows

Definition 2.23. The nonlinearity of a Boolean function f € F, is denoted by Ny and
equals

Ny = d(/, A) = min d(f, o).

It is obvious that nonlinearity of an affine function is zero. If the Boolean function
f is not affine, then we have N; > 0 by definition. Let us observe an example about
nonlinearity.

Example 6. Let f(z) = x129 € F» be the function and we compute its nonlinearity.
The related truth table is given by:

17



X
00 |
01
10
11

»—OOO‘KH

In the next step, we have to observe the truth tables of all affine functions.

e | fi=1]fo=0]fa=a | u=am1 @1l | fs=m | fo=m20]l | fr=a1@a | s=T1 Dy
00 1 0 0 1 0 1 0 0
01 1 0 0 1 1 0 1 1
10 1 0 1 0 0 1 1 1
11 1 0 1 0 1 0 0 0

Next, we have to compute all Hamming-distances between the function f and all affine
functions.

d(fafl) ‘ d(fvf?) ‘ d(f7f3) ‘ d(faf4) ‘ d(f)fS) ‘ d(fvfﬁ) ‘ d(faf?) ‘ d(fva)
3 | v | v [ 3 | 1 | 3 | 3 | 3

From definition, the nonlinearity of the function is the minimal Hamming-distance.
Therefore, it follows Ny = d(f, f2) = d(f, f5) = d(f, f5) = 1.

High nonlinearity is essential in designing a good cryptosystem. It measures the
ability of a cryptographic system using the functions to resist against being expressed as
a linear set of equations and it assures resistance against linear cryptanalysis introduced
by Matsui [24].
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3. The Walsh Transform

3.1. Generalities of the Walsh Transform

In this chapter we introduce one of the most important tools in cryptography. Namely,
the Walsh transform which is the characteristic 2 case of the discrete Fourier transform.
As we shall see, the use of the Walsh transform makes the computation of nonlinearity
and the other properties an easy task.

Let us recall that we have the space F,, of all two-valued functions on 3. The domain
of F, is an abelian group and its range elements 0 and 1 can be added and multiplied as
complex numbers. Now we analyze F,, by using tools from harmonic analysis, cf. Lechner
[17]. This means that we are able to construct an orthogonal basis of Fourier transform
kernel functions, or also known as group characters, on F,. The kernel functions are
defined in terms of a group homomorphism from F} to the direct product of n copies of
the multiplicative subgroup {41} on the unit circle of the complex plane. Thereby, we
obtain the group characters G, (z) = (—1)“®1 - .... (=1)* = (=1) In doing so,
the set {G,|u € F3} is an orthogonal basis for F,,. Due to these observations, we define
the Walsh transform of a Boolean function as follows:

Definition 3.1. The Walsh transform of a function f on [} is a map W: F; — R
defined by

W(f)w) =" fla) (-1, (3.1)

z€Fy

where (u, ) is the canonical scalar product. The Walsh spectrum of f is the list of
2™ Walsh-coefficients given by (3.1) as u varies.

Lemma 3.2. If u € F}, we have

w2 ifu=0
> - {3

o else.

Proof. f uw = 0, then all exponents are zero and therefore all summands are equal
1. Therefore, we have 2" summands. Now we assume that v # 0 and consider the
hyperplanes H = {z € F3|{u,z) = 0} and H = {z € F}|(u,z) = 1}. It is obvious
that these hyperplanes generate a partition of Fy. Furthermore, for any v € H, the
summand is equal one, and for any « € H, the summand is equal —1. In addition, the
cardinalities of H and H are the same, that is 2"~ . Therefore, the sum equals zero and
the statement follows immediately. O]
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Next we analyze the effect of applying the Walsh transform on W (f). Proceeding this
way we get the observation

WW(F)u) =Y W(f)x)- (=1)"

z€Fy

=3 3 S (=) (i

z€Fy velFy

= Z f(v) Z(_1)<(v+u),x>

vEFy z€FY}
=2 fv) =2"f(u).
BD veFs

Theorem 3.3. The Walsh transform W: 7 — R is bijective and the inversion is given
by:

Wt =2""W.
Hence, f can be recovered by the inverse Walsh transform given by

fla)=27" W(f)(u)- (1), (3:2)

uelFy

At that point we do a short insertion about Hadamard matrices. Furthermore, we
define the Kronecker product which we use to introduce Sylvester-Hadamard matrices.
This leads us to express the Walsh transform in terms of Sylvester-Hadamard matrices.

Definition 3.4. A matriz H of order n taking only the values in the set {1, —1} will be
called Hadamard matriz if H - H' = n - I,,, where H is the transpose of H and I,, is
the n X n identity matriz.

In particular, the product of two distinct rows of H is zero.

Since H~! = 2 H', we also have H'- H = n-I,. Wallis, Seberry and Street [43] showed
that if n is the order of an Hadamard matrix then n is divisible by 1, 2 or 4.
Next we introduce the Kronecker product of matrices.

Definition 3.5. If A = (a;;) is a m x m matriz and B = (b;;) is a n X n matriz over
any field, the Kronecker product of A and B is the mn X mn matriz obtained from
A by replacing every entry a;; by a;; B. This product is written as

anB  apB -+ a,B
anB  aypB -+ a,B

A9 B=| = » “ = (ayB).
Cbnllg Chnglg s C%nnlg
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The Kronecker product is not commutative. However, it satisfies the following prop-
erties:

1. ( A®B)®(C =A® (B ® () (Associativity)
2. (A+B)®(C=A®C+ A® B (Distributivity)
3. (A® B)(C ® D) = (AC) ® (BD).

Using the Kronecker symbol, we can define a special kind of Hadamard matrix as
follows:

Definition 3.6. The Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of
order 2", denoted by H,, is generated by the recursive relation

}{nfl ]{nfl
]yﬁ - =H @D]¥n— 5
{}{n—l - n—l} ! !
form=1,2,... and Hy = (1).

With this definition we are able to express the Walsh transform in terms of Sylvester-
Hadamard matrices, giving us W (f) = f- H,, since (—1)™" is the entry on the position
(u,v) € F§ xF%, in the matrix H,. Additionally, we can easily express the inverse Walsh
transform as f = 27"W(f) - H,.

Next we collect some properties concerning the Walsh transform.

The following lemma shows the connection between the Walsh transform of two Boolean
functions where one function is obtained by an affine transformation of the input coor-
dinates.

Lemma 3.7. [10] If the Boolean function f can be obtained from g by an affine trans-
formation of the input, that is

9(v) = f(Av @ b),

with A an invertible matriz and b € Fy, then the Walsh transform of f and g are related
by

W(g)(u) = £W(f)(uA™).
Proof. First,

Wg)w) = 3 (=) g(v) = 3 (=) f(4v & ).
veFy veFp
By setting v = A~ 'w @ A7 and v/ = uA~!, we get

W(g)(u) = Y (=) (=147 f(w)

weFy

=+ ) (=DM fw) = £W(f)(W).

weFy
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Furthermore, we observe the relationship between the Walsh transform of a Boolean
function and its sign function which was introduced by Forré [14].

Lemma 3.8. Let ]?(x) = (=1)/@) then
W (f)(u) = =20 (f)(u) +2"6(w),

which is equivalent to

W) () = 25u) — S (F)(w),

where

5(u) = {(1] for u=20

else

15 the Dirac symbol.

Proof. We start from the left-hand side of the first equation and obtain

-~

W) = 3 (1)@t

ey
= (- 2f(a) - (1)
ey
D N SILEEED PY I
€y z€FY
=2"0(u) = 2W(f)(v)
by definition 3.1 and lemma 3.2 ]

The following lemmas provide us with some properties satisfied by the Walsh trans-
form.

Lemma 3.9. The following statements are true:

~

1 W(Fe1)(u) = -W(P)w).
2. If g(z) = f(x) ® au(z), where aq(x) = Y i a;x; = (a, ) is the linear function,

o~

then W (g)(u) = W(f)(u & a).

3. If g(x) = au(x) ® c is the affine function, then W(@)(u) = (=) W(f)(u®a).

Proof.
1.
W(]@)(u) = Z( 1)/ @@18(u)
z€FY
— _ Z(_l)f(:c)exu v) _ —W(A)(u)
z€Fy
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WG ) =3 (—1)f@es)

€y
= D ()R —w(fusa)
€y
3.
W(F®g)(u) = 3 (~1)f@)s0utioesin
€y
— (_1)0 Z (_1)f(x)€a<(u69a),x> _ (_1)CW(}.\>(U @ &)'

€y

The addition of an affine function causes, except for the sign, a permutation of the
spectrum.

]

~

Corollary 3.10. In particular W(f)(u) is always even and we have
o < W(Pw) < 2"

A classic property of the Walsh transform is to be an isomorphism from the set of the
sign functions on F4, endowed with the so-called convolution product (denoted by ),
into this same set, endowed with the usual product. The notion of the convolution is
given within the next definition.

Definition 3.11. Let f and g be any Boolean function on Fy. The convolution of f and
g 1s defined by

= fWylz®y).

yelry

Proposition 3.12. Let f and g be any Boolean function on F3. We have:

W(f*g)=W(f) Wig) (3.3)
Consequently:
W(f)*W(g)=2"W(f-g) (3.4)
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Proof. We have

W(fxg)=Y (f*g)(z)- (=1~

z€Fy

=22 fwelrey) - (-H*
z€Fy yelFy

— Z Z FW)glz @ y) - (—1)weaty)
z€Fy yelFy

= [ D fw) - (D™ || D gz @y) - (1))

= Z fy)- (_1><u,y> . Z g(z) - (_1)(u,:c>
=W(f) W(g).

Thereby, the first equality is proven.
We recall the property W(W(f)) = 2"f. Therefore, we obtain W (W (f) « W (g))

LIl

221 f . g. Again, using the property we get W (f) x W(g) = 2"W(f - g).
Equation (3.4) applied at x = 0 gives
W(f)*W(g)(0) = 2"W(f - 9)(0) = 2" ) f(a)g(x) = 2"f * 9(0). (3.5)

zelFy

Taking f = ¢ in (3.5]), we obtain Parseval’s equation. Parseval’s equation will be a useful
tool to prove some of the following results.

Corollary 3.13 (Parseval’s equation). For any Boolean function f in n variables, the
following equation holds

3 (W(A)(u)>2 _ o (3.6)

3 ( ) 3N S (- @e ety

uckFy uelFy xefy yelFy
- E : § : f(z ©f(y § :(_1)<u7(:c@y)>
relFy yelFy uelFy

J/

-~

2160, (y)

_ 2n Z (_1)2f(x) — 2271’

z€FY
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1 ify==x
o) =9 .7
0 if y#x.

The following lemma is a similar result to Parseval’s equation.

Lemma 3.14. Zue]pg W(J?)(WW(J?)(U Sv) = {5 ' ZZ Z ; 8

Proof. The proof is straightforward and follows by lemma and the fact f(w)? =1

~ ~

Y WH@WHuov)= > (=) fw) Y (-1 fla)

uelFy u,weFy z€Fy
= 2 (D" Fw)fl) 3 (=
w,r€FY uely
=2 3 () flw) =2 3 (1)
wely welFy

]

The case v = 0 gives us Parseval’s equation.

As mentioned earlier we can state a relation between the Walsh transform of the
autocorrelation function, c.f. definition [2.14] and the square of the Walsh transform of
the real-valued function. This fact is stated by the Wiener-Khintchine Theorem.

Theorem 3.15. A Boolean function on F} satisfies

for allt € Fy.

Proof. According to the definition of the autocorrelation function, we obtain

W (r)(t) = Z 7(s) - (=) = Z Z(_l)f(r)eaf(xeas)@<t,s>

s€Fy seFp \ z€F?

_ 3 (—1)f@eGene()

zeFy \ seFy
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Since F7 is invariant under any transformation, we may replace s by @ s in the second
sum. Hence, we obtain

wH =3 | 3 (—1)f@sseetee)

zeFy selfy

= Z (_1)f(m)®<t,w> Z(_l)f(S)GB(t,s}

z€Fy selfy
2

= | e ) < wpre.

zeFy
m
Definition 3.16. The spectral radius of a Boolean function f: Fy — Fy is defined by

-~

Ry = max{[W(f)(u)|: v € F3}.

This definition provides a measure for linearity. Obviously, the linearity is upper
bounded by 2" > R; by corollary [3.10, The upper bound is only attainable if f is affine.

Theorem 3.17. For a Boolean function f: Fy — Fy the spectral radius s

Ry >27,

~

and the equality holds if and only if W (f)? = 2" is constant.

The class of functions for which equality holds are known as bent functions. We will
study those functions intensively in chapter [6]

Next, we provide a result about the nonlinearity of a Boolean function in terms of
their Walsh transform. Therefore, we use the result that we can deduce from the Walsh

~

transform, being that W (f)(u) is equal to the number of zeros minus the number of
ones in the binary vector f & a,,, where a, is the linear function o, (v) = > | w;v; with
u=(uy,...,u,) and v = (vy,...,v,). Thus, we have

~

W(f)(u) =2" —2d(f, Z U;V;)

(1,3 i) = 52"~ W(H(w).

We also can write,
n 1 ~
d(f,18) uw) = 52"+ W(f)(u)).
i=1

This proves the following theorem.
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Theorem 3.18. The nonlinearity of f is determined by the Walsh transform of f, that
18,

Ny =2 = L max [W () (w).

2 u€eFy

Thus, it is possible to achieve high nonlinearity if the maximal Walsh-coefficient is of
little value.

3.2. Walsh Transform on Subspaces

In this section we introduce a result which was given by Lechner [I7]. The theorem states
the so-called Poisson Summation Formula, which is an equation between the Walsh
transform of a real-valued function on F} and a function f restricted to an arbitrary
subspace of F7.

Theorem 3.19. Let f be a real-valued function on Ty and W (f) be its Walsh transform.
Let S be an arbitrary subspace of F§ and let St be the dual (annihilator) of S, that is,

S+ = {x € Fy|(x,s) =0 for all s € S}.
Then

W) =2 Y fu).

ucS ucS+

Proof. We have

Y WN = | X f)- (=)

u€esS ueS \veFy
-3 s ()
veFy ues
=205y f(v),
veSt
by using lemma (3.2 O

The following corollary was discovered independently by Duvall and Mortick [13].
Corollary 3.20. For any Boolean function f: Fy — o,
D W) =20y f(u),
u<v u<v

where u < v means that if u; = 1, thenv; =1, 1 < i <n, and T denotes the complement
of the vector v.

Proof. Analogue to theorem [3.19] O

These results will be important in chapter [6| where we discuss the degree of bent
functions.
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3.3. The Fast Walsh Transform

The computation of the Walsh transform requires 22" operations (additions and sub-
tractions). Therefore, the question arises whether there is a faster way to obtain the
Walsh-coefficients. MacWilliams and Sloane [21], p.422] dealt with this question and
came up with a description of the fast Walsh transform, which is a discrete version of
the fast Fourier transform.

Theorem 3.21. The Sylvester-Hadamard matriz (3.6) H, can be decomposed as
H, = M7(11)MT(L2) . M(”),

where Méi) = Ipn-i @ Hi ® Iyi-—1v with 1 < i <n and I, is the m X m identity matriz.

Proof. We prove the theorem by induction on n. For n = 1 the result is obvious. Now
we assume the result is true for n. Then for 1 < < n:

MEZ)H = ]2(n+1)—i ® H ® ]2171
=1L, ® I @ Hy ® Ipisy = I, @ MY
and MSI{I) = H, ® In.
Therefore, we can calculate:
My MUY = (L@ M)y - (I © M) (Hy @ 1)
=H ® (M(}f—)l e Méﬂ)

n

= H1®Hn = Hn+1

Let us observe an example given by MacWilliams and Sloane [21].

Example 7. For n = 2 we have to compute the matrices

1 1 0 0
1 1 =10 0
MY = In @ Hy ® Io = 00 1 1
0 0 1 —1
and
10 1 0
2 01 O 1
MP = Io ® Hy ® I = L0 1 o
01 0 -1
Then we can calculate
1 1 1 1
My _ [ -1 1 —1
MyMy™ =1y 1 1
1 -1 -1 1
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The above given sparse matrix method enables one to compute the Walsh spectrum
of the sign function using only n2™ operations [21].
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4. Correlation Immune Boolean
Functions

Correlation immune functions were introduced by Siegenthaler [40] in order to protect
some shift register based on stream ciphers against correlation attacks.

4.1. Basic Properties

Definition 4.1. [0/ A Boolean function f in n variables is said to be correlation im-
mune of order k, 1 < k < n, if for any fized subset of k wvariables the probability that,
given the value of f(x), the k variables have any fized set of values, is always 27%, no
matter what the choice of the fixed set of k values is. In other words, f is correlation
immune of order k if its values are statistically independent of any subset of k input
variables.

We can formulate the definition of correlation immunity to an equivalent information
theory condition.
If the chosen subset of k variables is {z(i1), z(i2),...,2(ix)}, then the above definition
of correlation immunity of order k is equivalent to the information theory condition that
the information obtained about the values of x(i;), x(i2), ..., x(ix) given f(x) is zero.
Now we collect some useful equivalent conditions to correlation immunity of order 1
given by [10].

Lemma 4.2. A function f in n variables is correlation immune of order 1 if and only
if any of the following conditions hold.

(1) Ifsupp(f) = {z € Fy|f(z) = 1}, then for each 1 < i < n, we have |{z € supp(f)|z; = 1}| =
[supp(f)]
St

(ii) For each 1 <i <mn, f(x)® z; is a balanced function.
(i) For each 1 <i<mn, Pr(z; =1|f(z) =1) = 5 = Pr(z; =0|f(z) = 1).

(iv) Let fo; and fi; denote the functions in n — 1 variables obtained from f by setting
x; = 0 or 1, respectively. Then for each i =1,...,n, the functions fo; and f1; have
the same Hamming-weight.

(v) All the Walsh transforms

-~

W)=Y (=170 wr(u) = 1,

€y
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are equal to zero.

(vi) For eachi=1,2,....n, Pr(f(z) = 1|z; = 1) = Pr(f(z) = 1|z; = 0) = “LL

277.
Example 8. We take the following 3-variable Boolean function f(z) = x; ® x1x2 ®
123 D xax3 @ 1. Thus, we obtain the truth table

r el
000
001
010
011
100
101
110
111

~—

%
_= = OO = hd’g;

We use lemma (v) and compute all Walsh-coefficients with wt(u) = 1. Hence, we
obtain that all Walsh-coefficients are equal zero. Therefore, the given Boolean function
is correlation immune of order 1.

Furthermore, we give an extension of lemma [4.2(v) with a short proof given by
Brynielsson as reported in Simmons [41].

Lemma 4.3. A function f in n variables is correlation immune of order k, 1 < k < n,
if and only if all of the Walsh transforms

W) = 3 (=1 @20 1 < wi(u) < k,
ey

are equal zero.

~

Proof. The proof is based on the fact that the Walsh transform W (f)(u) is the cross
correlation between f and the linear function «a,,. Let the k-vector y be defined by

) ::(1(i1)71(i2)>---71(ik))7

where x(i1), x(i2), ..., z(iy) are the variables in «,. Then we focus on the Walsh trans-
form in k variables of the conditional probability Pr(y|z), where z is a possible value of
f(z). By the definition of the expectation follows

S Pr(yl2)(~1)® = B[(~1)®|f(x) = 2] = B[(-1)®] = 3" Pr(y)(~1)".

The equality follows by our correlation immunity hypothesis. Thus, Pr(y|z) and Pr(y)
are identical since their Walsh transforms are identical. Consequently, the cross corre-
lation between f(x) and a,(x) is zero, which gives the statement. O
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It follows from lemma [4.3] that the functions f(x) and () are statistically indepen-
dent if and only if the Walsh transform W (f)(u) = 0.

Remark. We note that the original proof was given by Xiao and Massey [46]. Sarkar
[37] gave another noteworthy proof which is based on linear algebra and combinatorics.

Now, we obtain the correlation value ¢(f, ). Therefore, we recall that the Hamming-
distance between two Boolean functions f,g: Fy — {1,—1} is tied up with the cross
correlation between f and g which is defined as

_ #z € F3[f(2) = g(2)} — #{z € F3|f(2) # g(2)}

c(f,9) o

Now we use an arbitrary linear function «,,. Hence, we get

-~

(f, ) = 2"W(F)(u). (4.1)

Thus, lemma |4.3|states that achieving correlation immunity for f is the same as getting
zero correlation of f with certain linear functions «,. It is impossible to guarantee that
f will not have a nonzero correlation with any linear function. This means we cannot
achieve c¢(f, a,,) = 0 for every w. This follows from the following lemma, which was first
proven by Meier and Staffelbach [26].

Lemma 4.4. For any Boolean function f the total square correlation of f with the set
of all linear functions is equal to one, that is

Z c(f, o) = 1.

u€lFy

Proof. By equation (4.1)) we have

Y elfan)? =27 W),

u€eF? ueFg
then using Parseval’s equation (3.6 and the statement follows immediately. O

As aresult of lemma and equation (4.1f), we shift our focus to seeking those Boolean
functions of which the largest possible value of |W(f) (u)] is as small as possible. These
functions are the so-called perfect nonlinear functions which were introduced by
Meier and Staffelbach [26]. It is a well-known result that the class of perfect nonlinear
functions coincides with the class of bent functions. This result can be found in [6.179

4.2. Construction of Correlation Immune Functions

In this section we observe methods to construct correlation immune functions. First, we
adopt a terminology which was introduced by Chor et al. [9].
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Definition 4.5. A Boolean function in n variables which is balanced and correlation
immune of order k is said to be a k-resilient function.

Example 9. We consider F; and take the Boolean function f(z) = z1®xy®x3. It is easy
to verify that the function is balanced and correlation immune of order 2. Altogether,
it follows that the function is a 2-resilient function.

Resiliency has been characterized by Xiao and Massey [46] through the Walsh trans-
form.

-~

Theorem 4.6. Any Boolean function in n variables is k-resilient if and only if W (f)(u) =
0 for all u € FY such that wt(u) < k. Equivalently, f is k-resilient if and only if it is
balanced and W (f)(u) = 0 for all u € F} such that 0 < wt(u) < k.

Proof. See [2]. O

Before we start to construct correlation immune functions we recall that a Boolean
function cannot simultaneously have too many cryptographically desirable properties.
Siegenthaler [40] introduced a useful theorem which describes the relation between high
order correlation immunity and high algebraic degree for a Boolean function, and we
follow the more simple proof of Sarkar [10].

Theorem 4.7. If f is a Boolean function in n variables, which is correlation immune
of order k, then the degree of f is at most n — k. If f is also balanced and k < n — 1,
then the degree is at most n — k — 1.

Proof. A truth table for f(z,...,x,) is an array with 2" rows and n + 1 columns.
Clearly, each of the first n columns has values for one of the variables x; and the first n
entries of the 2" rows are the coordinates of all n-vectors in lexicographical order. The
last column gives the output values f(z1,...,z,).

Let f be correlation immune of order k. If we choose any k variables and make these
the leftmost ones in the truth table, then the last column of the truth table is the
concatenation of 2% strings of the length 2% and of equal Hamming-weight (follows
from generalization to order k of lemma [4.2[iv)). Now we suppose that the degree of f
is n — ¢ for some ¢ < k and deduce a contradiction.

Since f is correlation immune of order k, it is also correlation immune of order ¢ and
1+ 1. Also, by our assumption, the algebraic normal form has at least one term 1" of
degree n—1 while having no terms of greater degree. Let yy, ..., y; be the variables not in
T and let y be any other variable from {z1,...,z,} —{v1,...v:}. We arrange the truth
table for f so that the variables yy, ..., y;, y appear as the leftmost variables in this order.
This gives a division of the output column into 2! strings ¢(0),c(1),...0(2"" — 1) in
which all Hamming-weights are equal. We define the strings ¢g(j) = 0(2j)0(27 + 1) for
all 0 < j <2°—1. Then

wt(g(5)) = wt(o(2))) + wt(o(2j + 1)) = 2wi(o(2;))
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and therefore wt(g(j)) must be even. The string ¢g(0) of even Hamming-weight is a
function of n — ¢ variables and is obtained from f by setting the variables yi,...,y;
equal to 0. The term T does not contain any of the variables y, ..., y; and must thus be
in the algebraic normal form of g(0). Hence, g(0) represents a function of n —i variables
with degree n — i. Consequently, this function must have odd Hamming-weight, which
is a contradiction. Thus, the degree equals n — k.

Next, we suppose that f is balanced and has degree n—k for k < n—1. Let T be a term
of degree n — k and let yy, ...,y be the variables not in 7T'. If these variables are made
the leftmost variables in the truth table for f, then the output column can be divided
into 2% strings (0),0(1),...0(2¥ —1) in which the Hamming-weights are equal. Each of
these functions has n — k variables and contains the term 7. Hence, each function has
degree n — k and odd Hamming-weight. Let w be the common Hamming-weight of all
strings. Therefore, we have wt(f) = 28w with w odd. However, f is balanced and hence
wt(f) = 271, Thus, w = 2" %=1 which is even for k < n — 1. This is a contradiction.
Thus, the degree is equal ton — k — 1. O

In the context of counting correlation immune functions Mitchell [29] mentioned a

very simple method for constructing correlation immune functions of order 1. We define
the first half (f(ao), ..., f(agn—1_1)) of the function arbitrarily and then we define the
second half of the function by taking the bits of the first half in reverse order. By using
lemma [4.2)(7) the function f is correlation immune.
The disadvantage of such a construction is that these functions are not useful for crypto-
graphic applications because it is not easy to obtain other cryptographic properties such
as high nonlinearity. Therefore, we need more specialized constructions which are more
useful for cryptographic applications. Siegenthaler [40)] gives a recursive construction for
correlation immune functions of order £ as follows:

Theorem 4.8. Let x = (x1,...,x,) and suppose that fi(x) and fo(z) are correlation
immune functions of order k such that Pr(fi(x) = 1) = Pr(fo(x) = 1) = p. Then the
function f of n+ 1 variables defined by

f(@,2n11) = (o1 @ 1) fi1(2) @ 2np fo(2) (4.2)
is also correlation immune of order k and satisfies Pr(f(z) =1) = p.

Proof. Let y = (x;1), ..., ix)) be made up of an arbitrary choice of k of the variables z;
and let yo = (y1,...,yr) be any fixed binary k-vector. Since f; and f, are independent
of x,.1 we have either fixed choice of the bit b and 7 = 1 or 2

Pr(fi = 1|y = yo, 2ns1 = b) = Pr(fi = 1|y = yo) = Pr(f; = 1), (4.3)

where the second equality follows from the hypothesis that f; is correlation immune of

order k. Equations (4.2)) and (4.3) imply

Pr(fi =1y = yo, 2ni1 = 1) =Pr(fi =1)
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and

PI'(fz = 1|y = Yo, Ln+1 = O) = PI‘(fQ = 1)

The two right-hand-side probabilities are equal to p due to our hypotheses. Therefore,
we obtain

Pr(fi =1y = yo, tnt1 =b) =Pr(f =1) = p.

This implies that the value of f is independent of the choice of any subset of k of the
n + 1 input variables. Thus, f is correlation immune of order at least k. O

Remark. We note that the correlation immunity order is not increased in this construc-
tion.

From a cryptographic viewpoint, theorem is most interesting when p = % The
result of which is that f; and f; are k-resilient. In this case Camion et al. [I] provide a
more precise formulation of theorem [4.§|

Theorem 4.9. Let x = (x1,...,x,) and suppose that fi(x), fo(x) and f(x,x,11) are
related by equation (4.2). Then for k < n —1, f is (k+ 1)-resilient if and only if the
following two conditions hold:

(i) f1 and fy are k-resilient functions

(i1) for allv € FY with wt(v) =k + 1 we have the Walsh transform equation
W(f1)(v) + W(f2)(v) = 0. (4.4)

Also, if the degrees of f, f1 and fo are equal (thus, the degree of fi1 + fy is less than the
degree of f), then f has its mazimum degree n+1— (k+2) if and only if fi and fo have
their mazimum degree n — (k + 1).

Proof. Let w = (v, d) be a vector in Fi*!. Let x = (z1,...,2,). We obtain

W(f)(w) = Z f(ac, xn+1) . (_1)<v,w)@d-:pn+1

($7$n+l)eﬂr;+1

= > A@- 0P Y ) (-1

z€FY,xpn41=0 z€FY ,xzpny1=1
= W(f)() + (=)W (f2)(v). (4.5)
First, we suppose that f satisfies (i) and (7). Then from equation and (i) we have
W (£)(0) = W(f1)(0) + (=1)"W(f2)(0) = 2",

therefore, f is balanced. If w = (v,d) and 0 < wt(v) < k+1, then we obtain by equation
(4.5) and (7) that W(f)(w) = 0. Furthermore, if w = (v,d) with wt(v) = k + 1 and
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d = 0, then we obtain by equation and (i7) that W(f)(w) = 0. Hence, we have
that f is (k4 1)-resilient.

Conversely, we suppose that f is (k + 1)-resilient. Then for all w = (v, d) such that
1 < wt(w) < k+ 1, equation yields to

= W(f) () + (=)W (f2) (v). (4.6)

For w = (0, 1), equation gives W (f1)(v) = W(fs)(v). Since f is balanced for w = 0,
equation gives W(f)(0) = wt(f) =2" = W(f1)(0)+ W (f2)(0). Thus f, and f; are
balanced.

If 0 < wt(v) < k+ 1, then we obtain by equation that W(f1)(v) = W(f2)(v) for
d=1and W(f1)(v) = =W(f2)(v) for d = 0. Therefore, W(f1)(v) = W(f2)(v) =0, so
(1) is satisfied.

If wt(v) =k + 1 and d = 0, then we obtain (i7) from (4.6).

The last statement of the theorem follows immediately from equation and theorem
4.7, Each function f; and f, is k-resilient and have degree at most n — (k + 1). Using
equation (4.2)) we deduce that f has its maximum degree n + 1 — (k + 2). ]
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5. Avalanche and Propagation
Criterion

The Strict Avalanche Criterion (SAC for short) was introduced by Webster and Tavares
[44]. They write [44]: “ If a function is to satisfy the strict avalanche criterion, then
each of its output bits should change with a probability of one half whenever a single
input bit z is complemented to x.”

The SAC is a useful property for Boolean functions in cryptographic applications. This
means that if a Boolean function is satisfying the SAC, a small change in the input leads
to a large change in the output (an avalanche effect). This property is essential in a
cryptographic context due to the fact that we cannot infer its input from its output. In
addition to SAC we study the so-called Propagation Criterion (PC for short) which was
introduced by Preneel et al. [34].

5.1. The Strict Avalanche Criterion

Definition 5.1. A Boolean function f in n wvariables is said to satisfy the Strict
Avalanche Criterion if changing any one of the n bits in the input z results in the
output of the function being changed for exactly half of the 27! vectors x with the
changed input bit.

This property has an obvious desirability. Since knowing the function value for a given
input an attacker does not gain any information about the function value of a slightly
different input value.

We introduce the important notation of the directional derivative.

Definition 5.2. For f: F} — Fy and a € F}, a # 0, we define the function f,: Fy — Fy
by

fa(@) = f(z) & f(z & a).
fa 1s called the directional derivative of f in the direction a.

Now we are able to express the SAC in connection with the directional derivative.

Lemma 5.3. A Boolean function f: Fy — Fy satisfies the SAC if and only if the function
f(z) ® f(x @ a) is balanced for every a in Fy with Hamming-weight 1.
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Proof. We assume that f fulfills the SAC, then exactly half of the z € F} satisfy f(x) #
f(z @ a) for every a € Fy with wt(a) = 1. This means that

f(z)® f(x®a)=1 for half the z € Fy, and
f(z)® f(x®a) =0 for the other half.

Summing up over x € [} leads us to erwg f(x)® f(x®a) =2""1. So, f(z)® f(xDa)
is balanced. For the converse we reverse the arguments. O

Lemma provides a straightforward way to verify the SAC by computation the
output values of f.
Let us focus on an example of a SAC function.

Example 10. We take the 3-variables Boolean function f(z) = x12e ® 123 ® 2273 @
x1 @ 1. Clearly, the vectors with Hamming-weight one are the three unit-vectors in F3.
So we compute the following table.

zeF | f(2) | frde) | flxer) | f(z@es)
000 1 0 1 1
001 1 1 0 1
010 1 1 1 0
011 0 1 1 1
100 0 1 1 1
101 1 1 1 0
110 1 1 0 1
111 1 0 1 1

Next we compute the values for f(z) ® f(x ®e;) for i € {1,2,3}.

xeFy | f(x)®
000
001
010
011
100
101
110
111

(z@er) | flz)DflaDe) | f(x)® flz®es)

—_ OO R = OO S

f
0
1
0
1
1
0
1
0

OO, R~ = Rk O oS

By lemma [5.3] we see that the Boolean function fulfills the SAC because for each
i€{1,2,3}, f(z)® f(x @ e;) is balanced.
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Furthermore, we give an alternative formulation of lemmalb.3|using the autocorrelation
function in a slightly different way as in definition [2.14]

Definition 5.4. The autocorrelation function of a Boolean function in n variables is
defined as

2m—1

r(a) = > f(vi) & f(vi ® ),

for all a € F3.

The autocorrelation function is simply the sum over all values of the directional deriva-
tive f(z) ® f(x @ a) as x runs through FY.
Now we are able to restate lemma [5.3] in terms of the autocorrelation function.

Lemma 5.5. A Boolean function f in n variables is SAC if and only if the autocorre-
lation function r¢(a) is equal to 2" for all a € Fy with Hamming-weight 1.

5.2. The Strict Avalanche Criterion of Higher Order

In this section we study a generalization of the SAC defined by Forré [14], which she
named the SAC of higher order.

Definition 5.6. A Boolean function f(z) in n variables is said to satisfy the Strict
Avalanche Criterion of order k (SAC(k) for short) if fixing any & of the n bits in the
input x results in a Boolean function in the remaining n — k variables which satisfies the
SAC, where 0 < k <n — 2.

It is required that 0 < k < n — 2 since the SAC is not defined for 1-variable functions.
A function which satisfies the SAC as originally defined is a SAC(0) function.
Forré did not notice that if a function is SAC(k) for k > 0, then it is also SAC(j) for
any j =0,1,...,k — 1. This was pointed out by Lloyd [19].

Lemma 5.7. Suppose f is a Boolean function in n > 2 wvariables which satisfies the
SAC of order k, 1 < k < n —2. Then f also satisfies the SAC of order j for any
7=0,1,...,k—1.

Proof. We prove that if f satisfies the SAC of order k, then f also satisfies the SAC of
order kK — 1. The proof follows by induction.

The base step is trivial. For the inductive step, let g be a function in n — k + 1 variables
obtained by fixing k — 1 variables in f. We need to prove that g is a SAC function. By
lemma [5.3] it suffices to show

2n7k+1_1

S = Z g(v;) ® g(v; ® a) = 2", (5.1)

1=0
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for all a € FI* with Hamming-weight 1. Without loss of generality, we may take
a=(0,...,0,1). Thus, v; and v; @ a have the same first bit, so we may split the above
sum S into two sums. One sum in which the first bit of v; is zero and one sum in which
the first bit is one. Then we denote with gy and ¢; the functions obtained from ¢ by
fixing the first input bit as 0 and 1, respectively, and let a* be the vector made up of
the least n — k significant bits of a. Then we have

on—k_q on—k_1
S= Y aw) @avioa)e > gw)®awod).
1=0 =0

Both gg and ¢, are obtained from f by fixing k variables, so by hypothesis they are both
SAC functions. Therefore, both of the above sums are 277%~! and this proves equation

) =

Lemma 5.8. If f is a Boolean function in n > 2 variables and deg(f) = n, then rs(a),
as defined in definition does not take on the value 2"~ for any a € Fy.

This lemma is needed to prove the next corollary which is given by Preneel et al. [34].

Corollary 5.9. If f is a Boolean function in n > 2 variables and deg(f) = n, then f
does not satisfy the SAC.

Proof. We prove that if 7¢(a) = 2"~! for some a € F%, then the Hamming-weight wt(f)
is even. This is a contradiction since deg(f) = n implies that wt(f) is odd, cf. lemma
5.8, We suppose that 7¢(a) = 2""!. Then

2" —1 2"—1

wt(f) =D fo) =Y flv; @a)
i=0 i=0
L2l
=5 f(vi) & fv; © a)
i=0
= rf;a) = 2""%(mod 2).
Since n > 2, we have that wt(f) is even and the contradiction follows. Then using
lemma |5.8 and it follows that f does not satisfy the SAC. n

Now we turn to the issue of counting SAC functions. First, we shall prove a result
conjectured by Forré [14].

Theorem 5.10. There are 2" SAC(n — 2) Boolean functions in n variables.

To prove the theorem we need the following lemma.

Lemma 5.11. Supposen € Z, n > 2 and f: Fy — Fy. Then f satisfies the SAC of
order (n — 2) if and only if for all S C {1,2...,n},

j?(es) _ (_1) [S10S1-1) (J’;(O))(\S\-H) Hf(e{r})’

res

where eg denotes the element of Yy which satisfiese; =1 i€ S.
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Proof. See [19]. O

Proof of theorem[5.10. By lemma [5.11] the set of functions f: F§ — Fy satisfying the
SAC of order (n — 2) is the same as the set of functions f: Fy — Fy satisfying the set of
equations

Fles) = (=175 (FO) SO T Fleg).
res
with the notation of lemma [5.11]
Now, since we can write any element in F} as eg for exactly one set S C {1,2,...n}, this
determines the value of g(x) for all values of x with Hamming-weight greater than 1 in
terms of the values of g(x) for values of z with Hamming-weight less than or equal to 1.
In other words, if we choose values for g(0) and for g(e) for all 7 € {1,...,n}, then g
is completely determined on the whole of F§. Thus, there are 2"*! ways to choose such
a function, and so the size of the set of these functions is 2" +!. O

Next, we turn to the problem of counting balanced functions satisfying SAC of higher
order. Lloyd [20] first solved the problem but we follow a different approach based on
the paper of Gopalakrishnan and Stinson [15].

Lloyd characterized SAC functions in terms of their algebraic normal form of the function
f. Thus, a function f in n > 2 variables satisfies the SAC of order (n — 2) if and only if
the algebraic normal form is

f@)=a@an & - Sar, & Y (5.2)
1<i<j<n

for some ag,ay,...a, € Fy.
Now, we proceed to simplify the ANF without loss of generality since f(x) is balanced
if and only if f(x) @ 1 is balanced. Hence, we may assume that ag = 0.
We suppose that exactly r of the coefficients a4, ao, . .. a, are ones and the rest are equal
to zero. Let S,, denote the number of vectors z € F4 such that f(x) = 0, where
0 <r < n. The next lemma gives a recurrence relation for S, ,.

Lemma 5.12. Forn > 2 and 0 < r < n we have
Sn,r = Pn—1,r + Sn—l,r—l- (53)

Proof. Renumbering the variables does not affect whether a function is balanced or not,
so we may reduce (j5.2)) to

1<i<j<n

for some n, 0 < r < n.
Any vector x € F} has either x,,1 = 0 or z,.; = 1. We suppose that x,; = 0, then the
function f reduces to a function go: F3 ' — Fy of which the ANF is

GE)=21%- Sz, d Z Tixj,
1<i<j<n,
i1
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and the number of vectors in F5~! such that go(z) = 0is S,_1,. Furthermore, we
suppose that z,,; = 1, then the ANF of the induced function g,: Fy ' — F, is

g(z)=x,®-- @xT@ZxZ@ Z T

1<i<n, 1<i<j<n,
i;ér+1 i,j#r+1
=T 2@ Tr 3B D, D E ZiZj,
1<i<j<n,
by P

and the number of vectors in FS’l such that gy(z) = 01is Sp—1,-r—1. Thus, we have
Sn,r = Pn—1,r + Snfl,nfrfl- (55)
Using the recurrence relation (5.5)) to evaluate S,,_1,—,—1 we get

Snfl,nfrfl = San,nfrfl + Sn—Q,n—l—(n—'r—l)—l
= Pn—2n—r—1 + Sn—2,7"—1
= Sn—2,-1 1+ Sn-2,(n-1)—(r-1)-1

= n—1,r—1-

Substituting this back into (5.5)) gives (5.3)). O

Subsequently, we derive expressions for the boundary conditions S, and S, ,. If

r =0, the ANF (5.4 reduces to

Z TiT. (5.6)

1<i<j<n

We note that the equation ([5.6)) is symmetric in the n input bits and hence, the value
of f(z) depends only on the Hamming-weight of z. If the Hamming-weight is equal to
k, then

wilf) = (3) = 1) mod2

Since (];) =0 mod 2 if and only if £ = 0,1 mod 4, we have
n
Sno = . :
= > () (5.7)
0<k<n
k=0,1 mod 4

Now, when r = n, the ANF (j5.4)) reduces to

f@)=w1® - ®r, ® >z (5.8)

1<i<j<n
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Once again we observe that equation (/5.8]) is symmetric in the n input bits and hence, we
have that the value of f(z) depends only on the Hamming-weight of x. If the Hamming-
weight is equal to k, then

wt(f(z)) =k + (’;) = f(z) mod 2.

Since k + (g) =0 mod 2 