Seminar der WE A ℓ ZAGK WS 2005-2006

Die Modulfunktion.

Shaybel Ksenia

26. Januar 2006

1. Einleitung.

Die bisherigen Untersuchungen haben sich auf die Betrachtung eines festen Gitters $L \subset \mathbb{C}$ beschränkt. Im Folgenden wird es das Ziel sein, stattdessen die Mannigfaltigkeit aller Aquivalenzklassen von Gittern zu betrachten.

2. Äquivalenz von Gittern.

Recall: Ein Gitter $L \subset \mathbb{C}$ ist eine additive Untergruppe, die von zwei über \mathbb{R} linear unabhängigen komplexen Zahlen aufgespannt wird. Kurz: $L = \mathbb{Z}w_1 \oplus \mathbb{Z}w_2$.

Die Weierstraßsche \wp -Funktion zu L liefert dann einen Isomorphismus von \mathbb{C}/L mit der elliptischen Kurve, die gegeben ist durch

$$y^2=4x^3-g_2x-g_3,$$
 wobei $g_2=60\sum'\frac{1}{w^4},\,g_3=140\sum'\frac{1}{w^6}.$ Nämlich per: $z\mapsto [1,\wp(z),\wp'(z)]$ für z nicht in L und $z\mapsto [0,0,1]$, wenn $z\in L$.

Definition. Zwei Gitter L und L' heißen äquivalent, wenn es ein $a \neq 0$ in \mathbb{C} gibt mit aL = L'.

Hat man aL = L', so induziert die Multiplikation mit a einen analytischen Isomorphismus:

$$\varphi: \mathbb{C}/L \cong \mathbb{C}/L'$$

der zugehörigen elliptischen Kurven.

3. Gitterbasen.

 $L = \mathbb{Z}w_1 \oplus \mathbb{Z}w_2$ sei ein Gitter in \mathbb{C} . Da w_1 und w_2 über \mathbb{R} linear unabhängig sein sollen, hat man $\tau = \frac{w_1}{w_2}$ nicht in \mathbb{R} , indem man gegebenenfalls die Numerierung der Erzeugenden abändert, erhält man ohne Einschränkung $Im\tau > 0$, dass heißt τ gehört zur oberen Halbebene \mathfrak{H} .

Das zu L äquivalente Gitter

$$L_{\tau} = \mathbb{Z}_{\tau} \oplus \mathbb{Z} = \frac{1}{w_2} L$$

 $L_{\tau} = \mathbb{Z}_{\tau} \oplus \mathbb{Z} = \frac{1}{w_2}L$ liefert dann bis auf Isomorphe dieselbe elliptische Kurve wie L. Daher repräsentiert man Gitter $L \subset \mathbb{C}$ meistens durch Punkte $\tau \in \mathfrak{H}$.

Ist w'_1 , w'_2 eine weitere Gitterbasis von L, so hat man

$$w_1' = aw_1 + bw_2, w_2' = cw_1 + dw_2$$

mit einer invertierbaren ganzzahligen Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Gl_2(\mathbb{Z}).$$

Für den durch (w_1, w_2) gegebenen Punkt $\tau \in \mathfrak{H}$ gilt dann

$$\tau' = \frac{aw_1 + bw_2}{cw_1 + dw_2} = \frac{a\tau + b}{c\tau + d}.$$

Man rechnet:

$$Im(\tau') = \frac{\det AIm\tau}{|c\tau+d|^2}$$

 $Im(\tau') = \frac{\det AIm\tau}{|c\tau+d|^2}.$ Wegen $A \in Gl_2(\mathbb{Z})$ hat man $\det A \in \{1, -1\}$. Damit $\tau' \in \mathfrak{H}$, muss aber $\det A > 0$ gelten, und es folgt:

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in Sl_2(\mathbb{Z}).$$

Etwas formeller gesagt:

 $A \in Sl_2(\mathbb{Z})$ liefert eine Transformation $\mu_A : \mathfrak{H} \to \mathfrak{H}$ durch $\mu_A(z) = \frac{az+b}{cz+d}$ und wegen $\mu_A\mu_B=\mu_{AB}, \mu_E=id$ hat man eine Operation von $Sl_2(\mathbb{Z})$ auf der oberen Halbebene \mathfrak{H} .

Beispiele:

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ gibt } \mu_T(z) = z + 1,$$

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ gibt } \mu_S(z) = -\frac{1}{z}.$$

Die Äquivalenzklassen von Gittern entsprechen den Orbits der Punkte $\tau \in \mathfrak{H}$ bei der Operation von $Sl_2(\mathbb{Z})$.

4. Die Eisensteinreihen.

Die Konstanten in der Differentialgleichung der \(\rho\$-Funktion zu einem Gitter L: \)

$$(\wp')^2 = 4\wp^3 - g_2\wp - g_3,$$

sind gegeben durch

$$g_2 = 60 \sum_{w=0}^{1} \frac{1}{w^4}, g_3 = 140 \sum_{w=0}^{1} \frac{1}{w^6}.$$

 $g_2 = 60 \sum_{w=0}^{\prime} \frac{1}{w^4}, g_3 = 140 \sum_{w=0}^{\prime} \frac{1}{w^6}.$ Allgemein betrachtet man die Eisensteinreihe G_k zu L:

$$G_k(L) = \sum_{k=0}^{n} \frac{1}{w^k}.$$

Wir wissen, dass $G_k(L)$ für k > 2 konvergiert.

Uns interessiert die Abhängigkeit der Eisensteinreihen vom Gitter. Offenbar gilt:

$$G_k(aL) = a^{-k}G_k(L).$$

Folgerungen:

1. Man hat (-1)L = L, also $G_k(L) = G_k(-L) = (-1)^{-k}G_k(L)$. Daher $G_k(L) = 0$ für k ungerade.

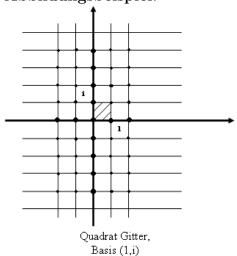
2. Für das Gitter $\mathbb{Z}_i = \mathbb{Z}i \oplus \mathbb{Z}$ gilt $i\mathbb{Z}_i = \mathbb{Z}_i$,

also $G_k(\mathbb{Z}_i) = i^{-k} G_k(\mathbb{Z}_i)$.

Daher $G_k(\mathbb{Z}_i) = 0$ für k = 6, 10....

(NB. $G_2(L)$ ist nicht absolut konvergiert, daher ist k=4 der erste relevante Index).

Abbildungsbeispiel:

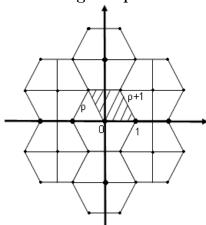


Fundamentalmasche mit Ecken 0,1,i,1+i

3. Für das Gitter $\mathbb{Z}_{\rho} = \mathbb{Z}\rho \oplus \mathbb{Z}$ mit $\rho = e^{\frac{2\pi i}{3}}$ gilt $\rho \mathbb{Z}_{\rho} = \mathbb{Z}_{\rho}$, also $G_k(\mathbb{Z}_{\rho}) = \rho^{-k} G_k(\mathbb{Z}_{\rho}).$

Daher $G_k(\mathbb{Z}_{\rho}) = 0$ für k = 4, 10...

Abbildungsbeispiel:



Sechseck Gitter, Basis (1,ρ)

Fundamentalmashe mit Ecken 0,1,ρ,ρ+1

Bei Sechseckgitter mit Gitterbasis $(1, \rho = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + i\frac{1}{2}\sqrt{3})$:

Ecken der Fundamentalmasche: $(0, 1, \rho, \rho + 1)$.

 $\rho=e^{\frac{2\pi i}{3}}=-\frac{1}{2}+i\frac{1}{2}\sqrt{3}$ ist primitive 3^{te} Einheitswurzel. $\rho,\rho^2,\rho^3=1$ sind die 3 komplexen Zahlen zmit $z^3=1.$

Beachte: $\rho^3 - 1 = (\rho - 1)(\rho^2 + \rho + 1) = 0 \Rightarrow \rho^2 + \rho + 1 = 0.$

 $\rho + 1 = e^{\frac{2\pi i}{6}} = \frac{1}{2} + i\frac{1}{2}\sqrt{3}$ ist primitive 6^{te} Einheitswurzel. D.h. $(\rho + 1)^k$ mit k = 1, 2, 3, 4, 5, 6 sind die 6 komplexen Zahlen z mit $z^6 = 1$. Denn: $(\rho + 1)^2 = (\rho^2 + 2\rho + 1) = \rho$, also $(\rho + 1)^2 \neq 1$, $(\rho + 1)^6 = \rho^3 = 1$.

Zeige noch: $(\rho + 1)^3 \neq 1$.

Indirekt: $(\rho+1)^3=1, (\rho+1)^2=\rho \Rightarrow \rho(\rho+1)=1 \Rightarrow \rho^2+\rho=1$. Wiederspruch zu $\rho^2 + \rho + 1 = 0.$

Mit einer Gitterbasis
$$(w_1, w_2)$$
 von L :
$$G_k(L) = \sum_{m=0}^{\infty} \frac{1}{(mw_1 + nw_2)^k} = \frac{1}{w_2^k} \sum_{m=0}^{\infty} \frac{1}{(m\tau + n)^k}, \text{ wobei } \tau = \frac{w_1}{w_2}.$$

Man setzt daher für $\tau \in \mathfrak{H}\!:$

$$G_k(\tau) = \sum_{k=0}^{\infty} \frac{1}{(m\tau + n)^k}$$
 und hat $\frac{1}{w_2^k} G_k(\tau) = G_k(L)$.

Transformationslemma.

Für
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sl_2(\mathbb{Z})$$
 gilt:

$$G_k(\frac{a\tau+d}{c\tau+d})\frac{1}{(c\tau+d)^k} = G_k(\tau).$$

Beweis:

A macht aus einer Gitterbasis (w_1, w_2) von L die neue Gitterbasis (w'_1, w'_2) mit

$$w'_1 = aw_1 + bw_2, w'_2 = cw_1 + dw_2.$$
Also $\tau' = \frac{w'_1}{w'_2} = \frac{aw_1 + bw_2}{cw_1 + dw_2} = \frac{a\tau + b}{c\tau + d}$ und $\frac{1}{w_2^k} G_k(\tau) = G_k(L) = \frac{1}{(w'_2)^k} G_k(\tau') = \frac{1}{w_2^k(c\tau + d)^k} G_k(\tau'),$

also in der Tat:

$$G_k(\tau) = \frac{1}{(c\tau+d)^k} G_k(\tau').$$

Anders geschrieben:

$$G_k(\tau') = (c\tau + d)^k G_k(\tau).$$

Insbesondere mit
$$T=\begin{pmatrix}1&1\\0&1\end{pmatrix}$$
 bzw. $S=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$:
$$G_k(\tau+1)=G_k(\tau),$$

$$G_k(\frac{-1}{\tau})=(-\tau)^kG_k(\tau).$$

Konvergenzlemma.

Zu Schranken $c > 0, \delta > 0$ existiert eine Konstante k > 0, so dass

$$|x\tau + y|^2 \ge k(x^2 + y^2),$$

für alle $(x,y) \in \mathbb{R} \times \mathbb{R}$ gleichmässig für τ im vertikalen Rechteckstreifen

$$|Re\tau| \le c, Im\tau \ge \delta.$$

Beweis:

Es reicht, für $x^2 + y^2 = 1$ eine Abschätzung $|x\tau + y|^2 \ge k > 0$ zu gewinnen. Aber:

$$|x\tau + y|^2 = (x\tau + y)(x\overline{\tau} + y) = (xRe(\tau) + y + ixIm(\tau))(xRe(\tau) + y - ixIm(\tau)) = (xRe(\tau) + y)^2 + (xIm(\tau))^2 \ge (xRe(\tau) + y)^2 + (x\delta)^2.$$

Und die Funktion $(x, y, Re(\tau)) \longmapsto (xRe(\tau) + y)^2 + (x\delta)^2$ hat auf der Menge $x^2 + y^2 = 1$, $|Re(\tau)| \le c \text{ ein Minimum } k > 0.$

Also ist $G_k(\tau) = \sum_{k=0}^{\infty} \frac{1}{(m\tau + n)^k}$, für k > 2, gleichmässig konvergent in den oben betrachteten vertikalen Rechteckstreifen und liefert daher eine analytische Funktion auf der oberen Halbebene.

5. Die Modulfunktion.

Zurück zu $y^2 = 4x^3 - g_2x - g_3$, mit $g_2(\tau) = 60G_4(\tau)$, $g_3(\tau) = 140G_6(\tau)$. Wir wissen: $\Delta(\tau) = g_2^3(\tau) - 27g_3^2(\tau) \neq 0$.

Recall:

$$(\wp')^2 = 4\wp^3 - g_2\wp - g_3 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$$

gibt $\Delta = 16(e_1 - e_2)^2(e_1 - e_3)^2(e_2 - e_3)^2$ und e_1, e_2, e_3 sind paarweise verschieden.

Begründung: \wp' hat 3 verschiedene Nulstellen modL, nähmlich $\frac{w_1}{2}, \frac{w_2}{2}, \frac{w_1+w_2}{2}$. In ihnen nimmt \wp die Werte e_1, e_2, e_3 jeweils mit Vielfachheit 2 an, gäbe es daher eine Koinzidenz $e_i = e_j$, so würde dieser Wert mit Vielfachheit 4 angenommen.

Man erhält daher eine analytische Funktion auf der oberen Halbebene durch

$$j(\tau) = \frac{g_2^3(\tau)}{\Delta(\tau)}$$
.

 $j(\tau) = \frac{g_2^3(\tau)}{\Delta(\tau)}.$ Die Modulfunktion j ist invariant unter $Sl_2(\mathbb{Z})$:

$$j(\frac{a\tau+b}{c\tau+d}) = j(\tau) \text{ für } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sl_2(\mathbb{Z}).$$

Denn unter $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ transformiert sich g_2 mit dem Faktor $(c\tau + d)^4$, g_3 mit dem Faktor $(c\tau+d)^6$ und also $\Delta=g_2^3-27g_3^2$ mit dem Faktor $(c\tau+d)^{12}$, so dass $j=\frac{g_2^3}{\Delta}$ insgesamt invariant ist.

Spezielle Werte.

1.
$$j(i) = 1$$
.

Denn wegen $i(\mathbb{Z}i \oplus \mathbb{Z}) = \mathbb{Z}$ folgt $G_6(i) = i^{-6}G_6(i)$, also $G_6(i) = 0$, und damit $g_3(i) = 0$. Mit $\Delta = g_2^3 - 27g_3^2$ kann auch schreiben

$$j = \frac{\Delta + 27g_3^2}{\Delta} = 1 + \frac{27g_3^2}{\Delta},$$

und es folgt j(i) = 1.

2.
$$j(\rho) = j(-\frac{1}{\rho}) = 0$$
 für $\rho = e^{\frac{2\pi i}{3}}$.

2. $j(\rho) = j(-\frac{1}{\rho}) = 0$ für $\rho = e^{\frac{2\pi i}{3}}$. Wegen $\rho(\mathbb{Z}\rho \oplus \mathbb{Z}) = \mathbb{Z}\rho \oplus \mathbb{Z}$ folgt $G_4(\rho) = \rho^{-4}G_4(\rho)$, also $G_4(\rho) = 0$ und damit $g_2(\rho) = 0$. Das gibt dann $j(\rho) = \frac{g_2^3(\rho)}{\Delta(\rho)} = 0$, also auch $j(-\frac{1}{\rho}) = 0$.

3.
$$\lim |j(\tau)|_{Im(\tau)\to\infty} = \infty$$
.

Mit bekannten Werten der \wp -Funktion hat man:

$$lim G_4(\tau)_{Im(\tau)\to\infty}=2\rho(4)=2\frac{\pi^4}{60}, lim G_6(\tau)_{Im(\tau)\to\infty}=2\rho(6)=2\frac{\pi^6}{945}.$$
 Damit rechnet man $lim\Delta(\tau)_{Im(\tau)\to0}=0$ und hat die Behauptung.

Literatur

- 1.M.Koecher/ A.Krieg. "Elliptische Funktionen und Modulformen ", Springer 1998. 2.E.Freitag/ R.Busam. "Funktionentheorie", Springer 1993.